Learning optimal objective
values for MILP

Karen Aardal, TU Delft

Joint with Lara Scavuzzo and Neil Yorke-Smith



(Q1): Can we predict the optimal objective value before we start
branching?

(Q2): Can we predict, during the solution process, whether or not
a solution is optimal?

The output from Q1 is used as input for the classifier that is used to
answer Q2.

Previous work on predictions has focused on predicting the optimal solution:
Ding et al. (2020), Nair et al. (2020), Khalil et al. (2022).

Our work is related to Berthold et al. (2018), and yields less “overly optimistic”
predictions.
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A Knapsack Game in Rounds

Given two agents each of them owning a set of n items.
Each item has a profit p and a weight w.

There is a knapsack with capacity c.
All information is public.

The Knapsack Game proceeds in rounds:
In each round the agents submit simultaneously one of
their items (which must fit in the current knapsack).
The item with higher efficiency p/w wins and is packed
into the knapsack.
Each agent wants to maximize the total profit of its packed
items.

Ulrich Pferschy, joint work with Rosario Scatamacchia
(Politecnico di Torino)



A Knapsack Game in Rounds

Best Response of agent B against agent A:
@ unknown strategy of A = outcome for B arbitrarily bad

@ list strategy of A:
A submits its items according to a predetermined list of items
(known to B)
= best response of B is a subset of items submitted by
decreasing efficiencies

@ this best response subset can be computed by Dynamic
Programming and by an ILP model (specific versions if
A follows a list sorted by decreasing efficiencies)

@ no poly time response with bounded performance ratio,
even if A sticks to an ordered list strategy
(list sorted by decreasing efficiencies).



A Knapsack Game in Rounds

In progress:
Pure Nash Equilibrium, Subgame Perfect Equilibrium,

price of anarchy / price of stability arbitrarily large.
Variant of the problem:
losing items are permanently discarded

= additional difficulty: which item should be sacrificed?
= best response of B not necessarily sorted.

= ILP model for best response of B given a list of A.



Elevator pitch:
Ever wished a Lagrangian was

as easy to use as a LP?
Your wish is now granted

Antonio Frangioni!

IDipartimento di Informatica, Universita di Pisa

27™ Combinatorial Optimization Workshop
Aussois (France), January 5 — 10, 2024



Have a block-structured program to solve

@ ...and always wondered if Lagrangian relaxation could be competitive

A. Frangioni (DI — UniPi) SMS++ 4 Lagrangian Aussois 2025



Have a block-structured program to solve

@ ...and always wondered if Lagrangian relaxation could be competitive

@ Just write it as a Block with its sub-Block (recursively if needed)

Block

linking constraints

| Block, \ Block, | ... ‘ Block,
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Have a block-structured program to solve

@ ...and always wondered if Lagrangian relaxation could be competitive
@ Just write it as a Block with its sub-Block (recursively if needed)

@ Attach Solver to each sub-Block (specialised if you have them)

Block

linking constraints

|Blockl\Block2 . \Blockk

Solver, Solver,

. Frangioni (DI — UniPi) SMS++ 4 Lagrangian Aussois 2025



Have a block-structured program to solve

@ ...and always wondered if Lagrangian relaxation could be competitive

Just write it as a Block with its sub-Block (recursively if needed)

@ Attach Solver to each sub-Block (specialised if you have them)

Attach LagrangianDualSolver to the Block, compute(), get optimal
primal (convexified) and dual

Block - |LagrangianDualSolver‘

linking constraints

| Block, \ Block, | ... \ Block,

|Bund1eSolver|

Solver, Solver,
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Have a block-structured program to solve

@ ...and always wondered if Lagrangian relaxation could be competitive

Just write it as a Block with its sub-Block (recursively if needed)

@ Attach Solver to each sub-Block (specialised if you have them)

@ Attach LagrangianDualSolver to the Block, compute (), get optimal
primal (convexified) and dual
@ Attach *MILPSolver to the Block, compute(), get optimal primal and

dual (of continuous relaxation) — together and in parallel if you want

Block < | LagrangianDualSolver ‘

linking constraints

| Block, \ Block, | ... \ Block,

W | BundleSolver |

" *MILPSolver |
Solver, Solver,
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Have a block-structured program to solve

@ ...and always wondered if Lagrangian relaxation could be competitive

Just write it as a Block with its sub-Block (recursively if needed)

@ Attach Solver to each sub-Block (specialised if you have them)

Attach LagrangianDualSolver to the Block, compute(), get optimal
primal (convexified) and dual

Attach *MILPSolver to the Block, compute(), get optimal primal and
dual (of continuous relaxation) — together and in parallel if you want

Change anything in Block, compute () reoptimizes, get new stuff

Block < | LagrangianDualSolver ‘

linking constraints

| Block, \ Block, | ... \ Block,

W | BundleSolver |

" *MILPSolver |
Solver, Solver,
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One example: SDDP + Lagrange

e Mid-term (1y) stochastic energy reservoirs management, each a
short-term (1w) unit commitment (# units, [HV]DC network, . ..)

@ Perfect for Stochastic Dual Dynamic Programming, but need duals

@ Either continuous relaxation of tight formulation or Lagrangian relaxation

@ Cherry-picked result: 60 stages (1+ year), 37 scenarios, 168 instants
(weekly UC), 83 thermals, 3 intermittent, 2 batteries, 1 hydro

@ Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.
Cost: Avg. / Std. | 3.951e+11 / 1.608e+11 | 3.459e+11 / 8.903e+10
Time: 5h43m 7h54m

@ Time OK using ParallelBundleSolver with 5 threads per scenario

@ That's 14% just changing a few lines in the configuration

A. Frangioni (DI — UniPi) SMS++ 4 Lagrangian Aussois 2025



All this and much more awaits you in SMS++

https://gitlab.com/smspp/smspp-project

“For algorithm developers, from algorithm developers”

@ Open source, extensive documentation https://smspp.gitlab.io
(but only one User's Manual: me)

o Parallel features built-in the system, all three main OSs supported

o Now featuring 4 main MI*LP solvers (Cplex, Gurobi, SCIP, HiGHS)
+ a few specialised ones (flow, knapsack, 1UC, box, ...)

@ Community-oriented: easy to add your own project, join the fun

A. Frangioni (DI — UniPi) SMS++ 4 Lagrangian Aussois 2025
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Capacitated Vehicle Routing with Fixed Order (CVRP-FOR)

Open Complexity on the line

Ekin Ergen (TU Berlin)

Steven Miltenburg (VU Amsterdam)
Rene Sitters (VU Amsterdam)

Leen Stougie (CWI and VU Amsterdam)
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Problem setting

n points in a metric space.

A depot with sufficient vehicles
Each vehicle has capacity ¢
Vehicles return to the depot

after having served a subset of
at most ¢ points.

2 Problem setting
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Problem setting

n points in a metric space.

A depot with sufficient vehicles
Each vehicle has capacity ¢
Vehicles return to the depot
after having served a subset of

at most ¢ points.

Points are ordered!!!

On each vehicle the assigned
points must be served in

the order given

3 Problem setting
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Problem setting

n points in a metric space.

A depot with sufficient vehicles
Each vehicle has capacity c
Vehicles return to the depot

after having served a subset of
at most ¢ points.
Points are ordered!!!

Example with c=2, order {1,2,3,4}
Vehicle 1: {1,3}
Vehicle 2: {2,4}

: Problem setting




Problem setting

n points in a metric space.

A depot with sufficient vehicles
Each vehicle has capacity ¢
Vehicles return to the depot

after having served a subset of

at most ¢ points.

Points are ordered!!!

 Minimize Total distance travelled

5 Problem setting

VU



Approximation on General Metric Spaces

 CVRP-FOR on general metric spaces

* Without FOR CVRP on general metric spaces is APX-hard and hasal + « —%

approximation scheme (Haimovich, Rinnooy Kan 1985) for a = % the TSP

approximation.
Improved very recently (Blauth, Traub, Vygen 2023) to 2.4997

 CVRP-FOR is still APX-hard (even if c=3), witha 1 + 1 —% approximation

Open Problem:
Can 2-1/c be improved?
Facts of Interest:
- Improvement of Blauth et al. does not work for CVRP-FOR

6 Hardness and Approximation

VU

N



Complexity of CVRP-FOR ON the line with fixed capacity ¢ = 37

Minimally Open Problem:
For c = 3is CVRP-FOR on the line NP hard?

Facts of Interest:
- CVRP-FOR on the line is NP-hard for arbitrary c. Does a PTAS exist?

- For constant c a PTAS exists for CVRP-FOR on the line (extending to

RAd).

Ergen & Miltenburg oral communication

7 Open Question VU¥



A PTAS for CVRP-FOR on a tree?

Open Problem:
For constant ¢ = 3 on a tree does a PTAS exist?

Facts of Interest:
- For constant c a PTAS exists for CVRP-FOR on the line.

- A PTAS exists for CVRP on a tree
Mathieu & Zhou 2022

8 Open Question

VU



Thank Youl!
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The Bin Packing Problem with Setups (BPPS)

The BPPS is a generalization of the Bin Packing Problem (BPP), in which the item set N is
partitioned into classes. Activating a class in a bin (i.e., packing at least one item of that class
into it) incurs an additional capacity consumption as well as a setup cost. We refer to the sets

of bins and classes as K and /, respectively.

Each item j € N has weight w; € Z*t and belongs to a class tj € I, while, for each class i € /,
we denote by s; € ZT and f; € ZT its setup weight and setup cost.

7
c=6
2 2 2 2
5
S1 S1 S1 S1
ws We wy Wg
wy wo w3 Wa
0
bin 1 bin 2 bin 3 bin 4

(a) high bin cost

2
S1 S1 51 S1 wg
wy
- ”
] wy wp w3 Wy ws

bin 1 bin 2 bin 3 bin4  bin5

(b) low bin cost
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Natural Formulation for the BPPS

(bZH- Z fiyik)

min
(x,y,2)€{0,1} Z

keK iel
d =1 VjeN,
keK
czk—prgkus,-y,-kEO Vk € K,
jen icl

Yeik — Xk 2 0 Vje N keK.

Proposition Proposition

There exist BPPS instances for which:

b
2P =42 T+ s 2LP) e,
i€l ¢ JEN i€l OPT

Aussois 2025 The Bin Packing Problem with Setups January 6, 2025
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The Minimum Class-occurrence Inequalities

We propose the following family of inequalities, which we refer to as minimum
class-occurrence inequalities (MCls):

T
ZyikZVi where 7’_:’72161\1,.1-‘ Viel

keK

Proposition Proposition

For all BPPS instances it holds that:

z(LP) = Z’Y{fi+§ (ZM+Z’Yi 5i> z(LP) > 1

icl OPT ~ 2

JjeEN icl

Aussois 2025 The Bin Packing Problem with Setups January 6, 2025
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Upper bounds to the optimal solution value of the BPPS

Proposition

Let A be an a-approximation algorithm (with o > 1) for the BPP. It is then possible
to derive a 2a-approximation algorithm for the BPPS.

Sketch of the algorithm:
1. Run A to pack the items of each class separately;
2. If possible, merge pairs of bins with free available capacity.

Aussois 2025 The Bin Packing Problem with Setups January 6, 2025 5/6



Open research paths
o Development of an approximation algorithm specifically tailored to the BPPS;

o New classes of lower bounds or bounds derived from new families of valid
inequalities;

« Efficient set-partitioning formulations and column generation algorithms.

Thank you for your attention!

Questions?

Aussois 2025 The Bin Packing Problem with Setups January 6, 2025
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Asymptotically Optimal Hardness for k-Set
Packing & k-Matroid Intersection

Theophile Thiery

Joint Work: Euiwoong Lee (U.Mich) & Ola Svensson (EPFL)

27th Aussois Combinatorial Workshop



k-Set Packing

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.

[. Generalizes maximum matching in graph

(when, k£ = 2) and thus models higher
dependencies in pratical applications.

[I. Benchmark problem: listed in Karp’s list of 21-
NP complete problems for kK = 3 and a special case
of k-Matroid Intersection.




Result & Consequences

Main Theorem

For any ¢ > 0, and sufficiently large k > k_, the k-Set Packing problem is hard
to approximate within a factor k/(12 + ¢), unless NP C BPP.

Consequences

k

log(k)
consistently cited for maximizing linear and submodular function over k-Matroid

Intersection, k-Matchoid, k-Matroid Parity.

[. Improves over the €2 ( )—hardness by Hazan, Safra and Schwartz’06 —

[I. Asymptotically optimal result and explains the lack of substantial progress
beyond O(k)-approximation algorithms.



Brief History & Result

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.
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Known results over time
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Brief History & Result

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.
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Brief History & Result

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.
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Brief History & Result

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.
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Brief History & Result

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.
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Brief History & Result

Problem Statement

Let k > 3 be some integer. Given a collection of sets, each containing up to k
vertices. Find sub-collection of disjoint sets of maximum size.
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Result & Brief Explaination

Main Theorem

For any ¢ > 0, and sufficiently large k > k_, the k-Set Packing problem is hard
to approximate within a factor k/(12 + ¢), unless NP C BPP.

[. Following [HSS’06], we encode satisfying assignments of k-CSPs as large
matchings. Our hyperedges correspond to constraints and labels that variables can
take. Invariant: Two hyperedges should intersect if the assignment is not
consistent.

[I. The novelty in our approach is to sparsify CSP to reduce the number of

constraints a variable appears in (< alphabet size), which allows to design a simple
gadget bypassing their tight construction.

5



Open Questions

Open Questions

[. Close the Gap: A better understanding of hardness of approximation of k-CSPs
could lead to stronger hardness results.

[I. What is the complexity of approximating a monotone submodular function
subject to a k-set packing constraint?

[1I. New algo/hardness for k-SP in online/streaming/... settings.



Open Questions

Open Questions

[. Close the Gap: A better understanding of hardness of approximation of k-CSPs
could lead to stronger hardness results.

[I. What is the complexity of approximating a monotone submodular function
subject to a k-set packing constraint?

[1I. New algo/hardness for k-SP in online/streaming/... settings.
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Model(s) for the homogeneous (tram) usage dispatching
problem

Some remarks on work in progress

Michael Kahr' Markus Leitner?> Rosario Paradiso?

"Department of Operations and Information Systems, University of Graz, Austria
2School of Business and Economics, Operations Analytics, Vrije Universiteit Amsterdam, The Netherlands
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Problem description and Motivation

Problem description:
Given a set of trams 7, a set of services S (or trips) they should
perform, and a set of parking corridors C (with either LIFO, or FIFO
queuing systems).
The objective is to assign services to trams such that their utilization
is (almost) balanced.

Motivation:
Practical: improve planning (of maintenance and investment), reduce
cost (by avoiding shunting).
Scientific: real-world problem (data from Italy), modeling FIFO and
LIFO queues, objective function structure.

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz



Graph representation

o 21X

FIF0

S =] |

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz 3/5



Graph representation
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Graph representation
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Graph representation
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Graph representation
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Event based formulation

st > Zec=1 Vee&
ceC
zecSmc_nc"‘szc_szc Vee A, VceC
feDs feAs
Zec S N+ Z Zfc — Z Zfc Ve e D,VceC
feAs feDgs
Zec € {0,1} Yee E,VceC

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz



Event based formulation

Min Umax — Umin

st Zzecz1 Ve e &
ceC

ZecSmc—nC+Zzﬂ—Zzﬂ Vee A, VceC
feDs feAs

Zec S N+ szc_ szc Ve e D,VceC

feAs feDs

Zec € {0,1} Ye e §,VceC

Umax = Umax(i) - Z Amax(iy e)(1—Zec) Vz e P(z)
(e,0)€EXC:izec=1

Umin < Umin(i) + Z Amin(z e)(1 — Zec) Vz € P(Z)

(e,0)€EEXC:iZec=1

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz
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Thank you!

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz
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A Linear Time Gap-ETH-Tight Approximation Scheme for
TSP in the Euclidean Plane

Tobias Momke
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r Euclidean TSP — Known Results

Arora [J. ACM 1998] and Mitchell [SICOMP 1999]
(Godel-Prize 2010):

Polynomial time (1 + £)-approximation algorithm, polynomial
running time

Rao and Smith [STOC 1998]:
Running time (1/£)°®/%)nlog n.
Bartal and Gottlieb [FOCS 2013]:

ow . .. )
(1/9)™ n, ie., linear time

Running time 2
Kisfaludi-Bak, Nederlof, and Wegrzycki [FOCS 2021]:

Running time 2°(1/¢) nlog n, which is GAP-ETH tight

2



Our Result

There is a randomized (1 + ¢)-approximation scheme for the Euclidean TSP in R? that runs in
time 2°1/<) n in the real-RAM model with atomic floor operations.

m Asymptotically tight unless the GAP-ETH is false

m Same machine model as Bartal and Gottlieb

3



Short Summary of ldeas

m Use sparsity-sensitive patching of Kisfaludi-Bak, Nederlof, and Wegrzycki if > 2 crossings
m Ensure sufficient potential for single crossings:

m Add portals of 2-approximate solution

m Long crossing edges: charge length of edge

m Short crossing edges: charge approximate solution

— AN A 1
/ Uj—2 . . Uj—2 A v Uj—2

https://arxiv.org/abs/2411.02585
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Connectivity via convexity:

Bounds on the edge expansion in graphs
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Edge Expansion

_ : 0S|
h(G)= 5cv,rqlgn|5|gg W

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 2



Edge Expansion

_ : 0S|
h(G)= 5cv,n1|gn|5|gg W

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 2



Edge Expansion

_ : 0S|
h(G)= 5cv,n1|§n|5|§g S|
L
= min XeT—:, st. 1<e'x< {gJ, x € {0,1}".

~~ formulation as a completely positive program

min (L, Y)

st. (ef 0 0))y=1
tr(CYCT — Cyd" —dy'C" + pdd") =0
diag(Y*?) =0

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 2



@ doubly non-negative relaxation: CP constraint ~» DNN
constraint (non-negative & psd)

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 3



@ doubly non-negative relaxation: CP constraint ~» DNN
constraint (non-negative & psd)

o facial reduction: reduce dimension from 2n+ 3 to n+ 1.

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 3
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@ doubly non-negative relaxation: CP constraint ~» DNN
constraint (non-negative & psd)

o facial reduction: reduce dimension from 2n+ 3 to n+ 1.
o strengthening the DNN relaxation by cutting planes

@ augmented Lagrangian algorithm with post-processing
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@ doubly non-negative relaxation: CP constraint ~» DNN
constraint (non-negative & psd)

o facial reduction: reduce dimension from 2n+ 3 to n+ 1.
o strengthening the DNN relaxation by cutting planes
@ augmented Lagrangian algorithm with post-processing

@ relaxation yields strong lower bounds and is computationally
efficient

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 3



code available at:
github.com/melaniesi/CheegerConvexificationBounds. jl

n | time (sec) | gap (%)
moviegalaxies-52 59 215 0.3
highschool 70 52.4 1.7
sp-office 92 89.8 2.4
game-thrones 107 108.5 0.4
revolution 141 233.7 7.9
malariagenes-HVR1 | 307 | 2620.7 4.4

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 4


github.com/melaniesi/CheegerConvexificationBounds.jl

Implied Integrality in Mixed Integer Optimization

Rolf van der Hulst, Matthias Walter

» Presolving technique used by all major solvers

> . . . . . . e
Integrallty of a variable is |mpl|ed by the constraints I+ 2y + 2 =4
and integrality of other variables.

» Existing methods detect implied integrality of one
variable at a time.

X,y €Z
(zeZ)

UNIVERSITY OF TWENTE.
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Implied Integrality in Mixed Integer Optimization

Rolf van der Hulst, Matthias Walter

» Presolving technique used by all major solvers

» Integrality of a variable is implied by the constraints

3x+2 =14
and integrality of other variables. Xteytz

X,y €Z

» Existing methods detect implied integrality of one
(zeZ)

variable at a time.

Implied integrality

For polyhedron P C RN and S, T C N, y
conv(P N (ZS x RN\S)) = conv (PN (ZSUT x RN\(SUT)Y)

-
>
- -

» Generalizes integer polyhedra (S =0, T = N)

UNIVERSITY OF TWENTE. 1/3



Fibers and Totally Unimodular submatrices

Theorem (van der Hulst, Walter)
For PC RN, S, T C N, if each S-integral fiber is T-integral, then T is implied by S

A~

» Fibers: {(X,y) | By < b— Ax} for fixed X € Z°.
» If and only if when S is binary

» Sufficient: B totally unimodular and b, A
integral.

» Detect network matrices, 'easy' subclass of TU

X

UNIVERSITY OF TWENTE. 2/3



Results and Outlook

» MIPLIB 2017 benchmark set, statistics of presolved problems

Method ‘ SCIP 9.0 default TU detection
Mean % of i.i. variables | 1.3% 16.4%
# affected instances (/240) | 42 162

» Performance results are WIP, will be featured in SCIP 10
Future research and open questions:

» Characterizations for relaxations of combinatorial optimization problems
» Complexity of recognizing implied integrality
» At least co-NP hard, but no known certificate yet

UNIVERSITY OF TWENTE.
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Fare Zone Assignment

Lennart Kauther,
joint work with Sven Mdller, Philipp Pabst, Britta Peis, and Khai Van Tran

January 6, 2025

RWTH Aachen University




... RWTHAACHEN

Problem Description ( UNIVERSITY

Input:
» Traffic network G = (V, E)
For this talk: Gis a tree.
» For each commodity i:
Start- and endpoint s; and t;,
Maximum number of allowed tariff zone changes u;,
Weight w;

u=5w=5
I -3, w =6

2/3



FAREZONEASSIGNMENT

e - 3

» u; — upper bound on zone changes

» Revenue for commodity i: number of zones passed - w;.
Revenue (no cut): + Wo + W3 + Wy +
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Goal: Find partition into fare zones that maximizes operator’s revenue

» u; — upper bound on zone changes

» Revenue for commodity i: number of zones passed - w;.

Revenue (no cut): + Wo + W3 + Wy +
Revenue (all cuts): 0 +6 - wo + 0 + 0 + 0.
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FAREZONEASSIGNMENT ‘. o UNIVERSITY

Goal: Find partition into fare zones that maximizes operator’s revenue

| | M e e ey R

» u; — upper bound on zone changes

» Revenue for commodity i: number of zones passed - w;.

Revenue (no cut): + Wo + W3 + Wy +
Revenue (all cuts): 0 +6 - wo + 0 + 0 + 0.
Revenue (OPT): +6-Wo+4- w3 +0+

3/3
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Results:
» NP-hard on paths.
» APX-hard on stars.
» Greedy arbitrarily bad.
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| N e e PR

Results: Open Problems:
» NP-hard on paths. » Constant-factor
» APX-hard on stars. approximation?

» Greedy arbitrarily bad. > Greedy extension?
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Support Vector Machines with ramp loss!

Data: x; € R?, y; € {—1,1} fori € [n]

1IP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479

POLITECNICO MILANO 1863



Support Vector Machines with ramp loss!

Data: x; € R?, y; € {—1,1} fori € [n]

T
o
10 o b
6%
£8 0
o
51 ® b
N
N
o
N
0l ., Fpa |
TR
.
5 N
I I I I
=5 0 5 10

1IP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479
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Support Vector Machines with ramp loss!

Data: x; € R?, y; € {—1,1} fori € [n]

Find w € R? and b € R such that:

Viiyi=1 wlx—b>1 °f

Viiyi=-1 wla—b< -1

S Vien yiwTx—b)>1 |
ol
sl

1IP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479
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Support Vector Machines with ramp loss!

Data: x; € RY, y; € {—1,1} fori € [n]
Find w € R? and b € R such that:

Vi:yi=1 wlxj—b>1 Penalty(q)
Viiy;=—1 wlxj—b < —1 )
= Vi€ [n] yi(wai — b) >1
(Penalty)  yj(wTx; —b) >1—& — Mgz
0 ifg<o0 5 q
Penalize violation q: < ¢q ifg € (0,2]
2 ifg>2.

1]P Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479
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Support Vector Machines with ramp loss!

Data: x; € RY, y; € {—1,1} fori € [n]
Find w € R? and b € R such that:

Vi:yi=1 wix;—b>1 Penalty(q)
Viiyi=-1 wlx—b< -1 )
= Vi€ [n] yi(wai — b) >1
(Penalty)  yj(wTx; —b) >1—& — Mgz
0 ifg<0 ——
Penalize violation q: < ¢q ifg € (0,2]

2 ifg> 2.
Minimize &(total penalty) +3||w|[3.

1]P Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479
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Support Vector Machines with ramp loss!

Data: x; € RY, y; € {—1,1} fori € [n]

Find w € R? and b € R such that:
10
Vi:yi=1 wa,'—b21
Viiyi=-1 wlx—b< -1
5 -
= Vi€ [n] yi(wai — b) >1
(Penalty)  yj(wTx; —b) >1—& — Mgz
0 [
0 ifg<o0
Penalize violationg: ¢ g ifg € (0,2] sl o
2 ifg>2. - 5 : m

Minimize &(total penalty) +3||w|[3.

1]P Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479
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A Mixed Integer Quadratic Optimization model ,,

ming e 3l1wl|5+ § Cicp (& +22)
s.t. yi(wai —b)>1-¢ — Mz Vi € [n]
weR beR,E€0,2]",z€{0,1}".

Tight bounds [£, u] on (w, b) = small M;’s = tighter formulation.
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A Mixed Integer Quadratic Optimization model ,,

3llwl3 +§ Siep (& +22)

yi(w'x; —b) > 1 - & — Mgz
weRLbeER,E€[0,2]",z€{0,1}".
Tight bounds [£, u] on (w, b) = small M;’s = tighter formulation.

w b 3 z
~ N N —— —

minw’b’ﬁ’z
s.t.

Vi € [n]

xl | — 1 M
Coeff. %N !
matrix: :T
YnXu | —Yn 1 M,

POLITECNICO MILANO 1863



A Mixed Integer Quadratic Optimization model ,,

sl[wll5 4+ & Y (& +22:)

yi(w'x —b) >1— & — Mz
weR,beR,E€0,2"z€{0,1}".
Tight bounds [£, u] on (w, b) = small M;’s = tighter formulation.

w b 3 z
N AN ———~——

minw’b’g’z
s.t.

Vi € [n]

x| — 1 M
Coeff. yl, ! s ) ! ) N Branch
matrix: : . - - onw,b
ynxn _yn 1 Mn
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A Mixed Integer Quadratic Optimization model ,,

ming, pe - %Hw‘ 5+ % Zie[n] (& +2z))
s.t. yi(wai —b)>1-¢ — Mz Vi € [n]
weRLbeER,E€[0,2]",z€{0,1}".
Tight bounds [£, u] on (w, b) = small M;’s = tighter formulation.

w b z

N AN ———~——
T
1x7 | —y1 |1 M,
Coeff. Y . ! Y ) ) N Branch
matrix: : . - - onw,b
YnXy | —Yn 1 M,

m Select w; or band 7 € (¢, u;)
® Branching rule: w; <7Vw;>T(or b<tVb>rT)
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A Mixed Integer Quadratic Optimization model ,,

ming, pe - %Hw‘ 5+ % Zie[n] (& + 2z;)
s.t. yi(wai — b) >1-& — Mz Vi e [1’1]
weRLbeER,E€[0,2]",z€{0,1}".
Tight bounds [£, u] on (w, b) = small M;’s = tighter formulation.

w b 3 z

N AN ———~——
T
1x7 | —y1 |1 M,
Coeff. Y . ! Y ) ) N Branch
matrix: : . - - onw,b
YnXy | —Yn 1 M,

m Select w; or band 7 € (¢, u;)
® Branching rule: w; <7Vw;>T(or b<tVb>rT)
m Heuristic based on LP solution to find good (w;, 7) or (b, 7)
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A Mixed Integer Quadratic Optimization model ,,

ming, pe - %Hw‘ 5+ % Zie[n] (& + 2z;)
s.t. yi(wai — b) >1-& — Mz Vi e [1’1]
weRLbeER,E€[0,2]",z€{0,1}".

Tight bounds [£, u] on (w, b) = small M;’s = tighter formulation.

w b 13 z
N AN ———~——
T
1X —11 1 M1
Coeff. Y . ! Y ) ) N Branch
matrix: : . - - onw,b
YnXp | —Yn 1 My

m Select w; or band 7 € (¢, u;)

® Branching rule: w; <7Vw;>T(or b<tVb>rT)

m Heuristic based on LP solution to find good (w;, 7) or (b, 7)
= Apply branching rule + all tighter big-M constraints

POLITECNICO MILANO 1863
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Computational tests? on known instances

Binary branch (z) Branch on w, b

Inst. t(BB) Nodes t(BB) Nodes

T 14703 13M 8.1 6491

2 88.7 834k 14.2 13991

3 6138 6909k 240 25241

4 3885 3255k 7.1 5743

5 168 68058 115 11228

® n=100,d =2 6 1208 1086k 213 21813
7 181.0 1660k 6.6 5315

m 2hr time limit 8 107.3 683k 10.8 10040
9 1312 1515k 182 17929

= Xpress 9.2, C API 10 84.0 929k 61 4931
. 11 11.8 153k 8.6 7831

m branching callbacks 12 121.0 1083k 150 14221
13 53.5 422K 5.2 4505

14 18.1 151k 7.5 6191

15 406 324k 111 10947

16 223 115k 49 3949

17 6.1 66173 6.1 5231

18 187 214k 8.3 8230

2PB, “Spatial branching for a special class of convex MIQO problems”, Optimization Letters 18.8 (2024): 1757-1770

3PB, P Bonami, M Fischetti, A Lodi, M Monaci, A Nogales-Gémez, D Salvagnin. “On handling indicator constraints in
mixed integer programming.” Computational Optimization and Applications 65 (2016): 545-566.
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Robust optimization approaches for

the Multiple Suppliers Purchase
Planning Problem under Uncertainty

Gentile C.7, Giancola F."2, Mattia S.1

TInstitute for System Analysis and Computer Science “Antonio Ruberti” (IASl), National
Research Council of Italy, Via dei Taurini 19, 00185, Rome, Italy

2 Department of Computer, Control and Management Engineering Antonio Ruberti
(DIAG),Sapienza University of Rome, Italy
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Introduction: Multiple Supplier Selection and Purchase Planning Problem

The problem: Definition of a purchase plan to meet dynamic demand by
minimizing costs in a multiperiod model, which balances supply (g;) from
multiple suppliers (S) with demand (d,) over a planning horizon (T) while
managing inventory levels (I, ) and backorders (B,).

Single
supplier s

Key challenge: Uncertainty in suppliers lead times

Our approach: Robust optimization algorithms to find valuable solutions
even in the worst-case scenario

Giancola — cow25 — Robust optimization approaches
for the MSPP problem under uncertainty




Robust optimization approaches

Comparison of three robust optimization models:

1. Adjustable Unrestricted Model (Two-stage)
« Fully adjustable decisions (max flexibility).
« High computational complexity (NP hard).

2. Static Model (Single-stage)
» Fixed decisions for all scenarios (worst case).
« Computationally efficient but very conservative.

3. Partially Adjustable Model
« Hybrid approach that combines the static and the adjustable methods.
« The planning horizon is divided into two phases, each with a different level of
adaptability.
« Balanced approach (tradeoff between flexibility and complexity).

Key Contribution:

s Comparative analysis of these models in terms of solution quality and computational
feasibility.

% Practical insights for supply chain decision makers on managing uncertainty in
supplier lead times.

Giancola — cow25 — Robust optimization approaches
for the MSPP problem under uncertainty




Thank you!

Giancola — cow25 — Robust optimization approaches
for the MSPP problem under uncertainty




Extended Formulations for Control Languages Defined
by Finite-State Automata

Maximilian Merkert', Christoph Buchheim?, 27th Aussois COW, January 6, 2025
'TU Braunschweig, 2TU Dortmund




discretize

solution

Maximilian Merkert | Extended Formulations for Control Languages Defined by Finite-State Automata | Page 2



Extended Formulations for the Set of Feasible Controls

i strengthen .
. optlmal_ contrpl prOblem. g extended formulation
with combinatorial constraints
l ldiscretize
discretize

strengthen extended formulation
for discretized problem

lsolve

solution

time-discretized problem

Advantages:

= Convex-hull formulation in the space of controls is independent of the discretization.

= Methods such as combinatorial integral approximation [Sager, Jung, Kirches, 2011] benefit from
strong continuous relaxations.

O . Y
% ’g ){ Maximilian Merkert | Extended Formulations for Control Languages Defined by Finite-State Automata | Page 2
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Extended Formulations for the Set of Feasible Controls

i strengthen .
. optlmal_ contrpl prOblem. g extended formulation
with combinatorial constraints
l ldiscretize
discretize

strengthen extended formulation
for discretized problem

lsolve

solution

time-discretized problem

Advantages:

= Convex-hull formulation in the space of controls is independent of the discretization.

= Methods such as combinatorial integral approximation [Sager, Jung, Kirches, 2011] benefit from
strong continuous relaxations.

But: Very few such formulations known; started only recently with [Buchheim, 2024].

O . Y
% ’z ){ Maximilian Merkert | Extended Formulations for Control Languages Defined by Finite-State Automata | Page 2
), v



Finite-State Automata & Extended Formulations

Proposition (Fiorini, Pashkovich, 2015) n 0

Let £ denote a language over £ ={0, 1} and
M= (Q,3, L, q. F) be any deterministic finite-state

automaton recognizing the language £. Then for each 1 1
n € N, there exists an extended formulation of
conv{x € {0,1}" | x € L} start —{ even :) 0

with size at most 2|Q|n.
Example: Even Parity

O . Y
% ’g ){ Maximilian Merkert | Extended Formulations for Control Languages Defined by Finite-State Automata | Page 3
9, J

v?




Finite-State Automata & Extended Formulations

Theorem (Buchheim, M., 2024)

Let £ denote a language over £ C R" and
M= (Q,9, L, qu, F) be any finite-state control
100.4] ol

automaton recognizing the language L. Then for every
T € Q. there exists an extended formulation of

conv(ueBV([0, T],Z) |ue k) start —| 0 )0

with polynomially many controls and linear constraints.

Example: Min-Up/Down

v?

O . Y
% ’z ){ Maximilian Merkert | Extended Formulations for Control Languages Defined by Finite-State Automata | Page 3
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= Main result transfers large class of extended formulations to function space.
= We provide tools for non-representability proofs.
= Some surprises, e.g. any discretization regular # regular as a control language

= Preprint on finite-state control automata and convex-hull descriptions in function space
— [Buchheim, M.: Extended Formulations for Control Languages Defined by Finite-State Automata, Preprint
(Optimization Online), 2024.]

Maximilian Merkert| Extended Formulations for Control Languages Defined by Finite-State Automata | Page 4
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= Main result transfers large class of extended formulations to function space.
= We provide tools for non-representability proofs.
= Some surprises, e.g. any discretization regular # regular as a control language

= Preprint on finite-state control automata and convex-hull descriptions in function space
— [Buchheim, M.: Extended Formulations for Control Languages Defined by Finite-State Automata, Preprint
(Optimization Online), 2024.]

Thank you for your attention!

Maximilian Merkert| Extended Formulations for Control Languages Defined by Finite-State Automata | Page 4



https://optimization-online.org/?p=26321
https://optimization-online.org/?p=26321

75 TECHNISCHE
UNIVERSITAT
DARMSTADT

Analyzing the Sensitivity of Integer Linear
Programs via Optimization Oracles

Erik Jansen

joint work with Marc E. Pfetsch

Funding by the Hessian Ministry of Higher Education, Research, Science and
the Arts — cluster project Clean Circles
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Motivation

TECHNISCHE
UNIVERSITAT
DARMSTADT

Integer Program

max c¢’x
X
st Ax<bh, (IP)
xezZ"

How much can we change the objective ¢ without changing the optimal solution(s) x?

Discrete
2026-01-06 | COW 2025 | E. Jansen, M. E. Pfetsch | 2 1 T .
< Optimization



Oracle-Based Radial Cone Algorithm
built upon IPO (Walther, 2016)

TECHNISCHE
UNIVERSITAT
DARMSTADT

Input: Optimization oracle O(-), Vertex of Interest X
Output: Incidence graph T of radial cone at X

1 T « Initial-Conical-Hull(O(-), X)
F « Set of active Facets

N

3 while F z @ do
4 Selectf e F
5 X « O(cy) // Run the Oracle with ¢
6 if c;x > 6; then
7 | (T,F) «< Cone-Update(T,x,F,f) // Update Cone
8 else
9 | Fe<F~{f} // Set facet f inactive
10 end
1 return T
2026-01-06 | COW 2025 | E. Jansen, M. E. Pfetsch | 3 Discrete
’ B « Optimization



Oracle-Based Radial Cone Algorithm
built upon IPO (Walther, 2016)

TECHNISCHE
UNIVERSITAT
DARMSTADT

Input: Optimization oracle O(-), Vertex of Interest X
Output: Incidence graph T of radial cone at X

T « Initial-Conical-Hull(O(-), X)
F « Set of active Facets

N

3 while F z @ do

4 Selectf e F

5 X « O(cy) // Run the Oracle with ¢

6 if c;x > 6; then

7 | (T,F) «< Cone-Update(T,x,F,f) // Update Cone

8 else

9 | Fe<F~{f} // Set facet f inactive
10 end
1 return T

2026-01-06 | COW 2025 | E. Jansen, M. E. Pfetsch | 3 « 8S§F§§ation



Small Example
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min 17x
s.t.  -0.5x +y +z<1.5
x -0.5y +z<1.5
X +y -0.5z<1.5
-X -y -z<-0.2
O0<sx,y,z<1

2026-01-06 | COW 2025 | E. Jansen, M. E. Pfetsch | 4

&
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Motivation

Symmetry handling is important

> many optimization problems contain
symmetries

» disabling symmetry handling makes, e.g.,
SCIP 8 by 16% slower on MIPLIB 2017

2 Symmetry Handling in the Presence of Custom Constraints
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Motivation

Symmetry handling is important

> many optimization problems contain
symmetries

» disabling symmetry handling makes, e.g.,
SCIP 8 by 16% slower on MIPLIB 2017

But
» some problems contain lazy constraints

> solvers cannot detect symmetries
automatically

Traveling Salesperson Problem

(for undirected weighted graph G = (V, E, w))

min Zwexe

eckE

> xe=2
ecs(v)

> %22
ecs(S)

x € {0,1}F

2 Symmetry Handling in the Presence of Custom Constraints

TU/e



Main Question

Can we inform a solver about symmetries of lazy or custom constraints to
benefit from powerful build-in symmetry handling methods?

3 Symmetry Handling in the Presence of Custom Constraints TU/e



Symmetry Detection

» solvers detect symmetries by building

. min X1
auxiliary graph
» for each inequality, define a graph
whose automorphisms correspond to =24
symmetries —X1
» combine these graphs for all
inequalities

4 Symmetry Handling in the Presence of Custom Constraints

- X2 + 2X3 + 2xa
X3 + Xa

+ X2 + 3x3

+ X2 + 3x4

IAIACIA
N



Symmetry Detection for Lazy Constraints

Example: TSP
» same idea works for lazy constraint
» define auxiliary graph for entire
family of lazy constraints
.éL\.
N

5 Symmetry Handling in the Presence of Custom Constraints TU/e
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Symmetry Detection for Lazy Constraints

Example: TSP
» same idea works for lazy constraint

» define auxiliary graph for entire
family of lazy constraints
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Symmetry Detection for Lazy Constraints

Example: TSP
» same idea works for lazy constraint

» define auxiliary graph for entire
family of lazy constraints

» We have implemented this idea in
SCIP 9:

» symmetry information can be added
via callback

> SCIP extends its internal symmetry
detection graph by user information

5 Symmetry Handling in the Presence of Custom Constraints TU/e



Usage of Callback

2
3
'
]
7
5
o

1
1

15

static
SCIP_DECL_CONSGETPERMSYMGRAPH (consGetPermsymGraphTSP)

{

SCIP_CONSDATA* consdata;
int* idx;
int vidx, nnodes, v;

consdata = SCIPconsGetData(cons);
nnodes = consdata->nnodes;
SCIP_CALL( SCIPallocBufferArray(scip, &idx, nnodes + 1) );

for( v = 0; v < nnodes; ++v ){
SCIP_CALL( SCIPaddSymgraphOpnode(scip, graph, 0, &idx[vl) );

}
SCIP_CALL( SCIPaddSymgraphConsnode(scip, graph, cons, 0.0, 0.0, &idx[nnodes]) );

for( v = 0; v < consdata->nedges; ++v ){
vidx = SCIPgetSymgraphVarnodeidx(scip, graph, consdata->vars[vl);
SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, idx[consdata->first[v]], vid, FALSE, 0.0) );
SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, idx[consdata->second[vl], vid, FALSE, 0.0) );
s

for( v = 0; v < nnodes; ++v ){
SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, idx[v], idx[nnodes], FALSE, 0.0) );
}
*success = TRUE;
SCIPfreeBufferArray(scip, &idx);

return SCIP_OKAY;

Symmetry Handling in the Presence of Custom Constraints

TU/e



Summary

> symmetry detection in presence of lazy or custom
constraints is possible

> framework also allows to detect reflection symmetries

> check the preprint for more information on

> theory behind symmetry detection graphs )
> rules for building these graphs Pl
» specialized graph for MINLP

7 Symmetry Handling in the Presence of Custom Constraints TU/e


https://optimization-online.org/?p=26398

MOTIVATION: Find efficient separation algorithms for
rank-1 Chvatal-Gomory cuts derived from Knapsack sets

Given)?EP::{xe]RfHaTxgb7 xi<1,i=1,...,n} with b,a; € Zy
—_———  —/ — (——

0<up<1 0<u;<1

Rank-1 Chvatal-Gomory cut: z(u) = ZLuoa,-—i—u,-J)?,-—Luob—l—Z ui] >0 (1)

i€l i€l

Lemma 1 (Selecting best multipliers u; given ug)

Given i1 € RT™ with z(1) > 0, define J(a) = {i € I | |Uoa; + ;] = |Toai| + 1}. Then,
we have that z(u) > z(@1) for any u € R such that up = to and

[ 1 (wai — |war)) ifie J(a)
“f—{o e e ifiel\J(@). @

.

Theorem 2 (Discretising multipliers uo)

Given Uy := {aﬂ |li=1,....,n, p=1,...,a — 1}, to get u € ]R’r'l maximizing z(u),
for each ug € Uy we look for J(ug) C I such that

z(uw) = ZLuoa, Xi + Z X — |uob + Z (1 — (woaj — |woa;]))] > 0.

iel J€J(up) J€JI(up)

To find J(uo) we need to solve a sequence of n Knapsack Problems.

N,




@ The exact separation of a rank-1 CG-cut has complexity O(bn?KP). If we use
dynamic programming for KP, we get O(b?n®).

@ For a fractional KP heuristic, the complexity is O(bn?).

Results on the Generalized Assignment Problem (GAP), SCIP heuristic lifted-cover [Letchford2019],

GUROBI cover cuts, and our CG-cut. Gap closed: (1 — LP"_LPCG) - 100, runtime in seconds.

Opt—LPcg
SCIP Gurobi Exact KP Fractional KP
instance gap cl. time gapcl. time gap cl.  time gapcl. time
d05100 15.59% 0.2 11.13% 0 56.69% O 55.52% 0
d05200 13.39% 0.3 13.59% 0 54.20% 1 54.03% 0
[ — [ ——] [ — [ —]
d10100 22.59% 0.4 593% 0 63.69% 1 63.41% O
[ S—]  — ) [ ]
d10200 15.90% 0.5 11.72% 0 51.30% 1 50.46% O
= — [ —] [ — [ —]
d20100 26.39% 0.9 272% O 66.79% 2 66.60% 1
™ —  — — )
d20200 30.93% 15 2.00% O 70.56% 3 69.86% 1
[ —  — ) )
d20400 29.12% 2.6 589% 1 70.27% 4 69.90% 2
[ —] [ — E— ]
d201600 26.77% 10.8 39.39% 2 74.61% 8 73.58% 5
[~ — [ ] ] )

Preprint: Giacomo Maggiorano, Stefano Gualandi, Pasquale Avella, and Michele Mele.
Rank-1 Chvatal-Gomory cuts from Knapsack sets: A computational study, 2024.
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The DISPLIB 2025

computational competition

Giorgio Sartor, Oddvar Kloster,
Bjgrnar Luteberget and Carlo Mannino




Traffic Management System (TMS)

° °®
i [Viotivation

LN N | :- LB N 4
r Dispatching | Real-time G Dispatchers'
L - _algo:ritnm_ . schedule = Userinterface

Control system J—I

* «train dispatching» in Google Scholar returns 17600 results from 2020...

* ..and probably each one of them uses a different set of instances! WHY?? @ (crying of frustration)

* Many countries still consider the sharing of railways data as a violation of national security
— But they publish a public timetable (not in machine-readable format) g
— And (in Europe) they are required to publish a network statement

* Lack of a standard format
* Existing formats (e.g., RailML) are way too detailed and complex for non-experts

* Other research communities have gained a lot from standardized, comprehensive benchmark libraries
— Vehicle Routing (TSP, CVRP, ...)
— SATLIB, MIPLIB, MaxSAT Evalutations, ...



sl The DISPLIB 2025 Competition: spirit and rules

* The competition challenges the research community to find innovative and effective algorithms for
solving a diverse set of real-life train dispatching instances

* The instances come from different countries and have different characteristics: some have many
routing options and few trains while others have few routing options and many trains.

— (thanks to SINTEF Digital, Siemens Mobility, data.sbb.ch for confirmed sets of instances so far...)
— (three new data sources under way, pending data release, more are welcome!)

* General rules:
— The usage of commercial MIP solver is allowed
— The usage of ML pre-training is allowed, and the learning phase does not count against the time limit

— The time limit to solve each instance is 10 minutes, maximum 8 CPUs and 32GB of RAM. Teams using GPUs
are limited to 1 GPU unit and 24 GB of GPU memory.

— The source code does not need to be submitted, but the winners may be required to show additional proof
of compliance to the rules above



The DISPLIB 2025 Competition:
il a train dispatching challenge

===

DISPLIB: a new train dispatching benchmark library

Wide range of real-life instances from all over the world
Simple but powerful problem definition

The DISPLIB 2025 Competition

Schedule and route trains from a wide range of real-world use cases
No deep knowledge of railways needed to start
Winners will be invited to a special session at ODS 2025

... and get an expedited review process in the Journal of Rail Transport
Planning & Management (JRTPM)

FINAL SUBMISSION: End of April 2025
Get started now!!

displib.github.io



https://displib.github.io/

SINTEF

Technology for a better society



Jannik Trappe

Volker Kaibel

Cyclic Transversal Polytopes and
Parity-Based Facets of Well-Known

Polytopes
%,

Aussois



Cyclic Transversal Polytopes (Frede, Merkert, Kaibel [2023])

B(1) B(2) 5(3) 5(4)

1 Jannik Trappe // CTP
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Cyclic Transversal Polytopes (Frede, Merkert, Kaibel [2023])

B(1) B(2) B(3) B(4)
00 1 1 1 0 1 1
01 1 0 1 00 0
010 0 1 0 1 0
00 1 0 1 00 0

1 Jannik Trappe // CTP
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Cyclic Transversal Polytopes (Frede, Merkert, Kaibel [2023])

B(1) B(2) B(3) 5(4)
1 1 1 1 0
1 1 0 0 _ 0
o g 17 0 a 0
1 1 0 0 0
Special case: parity polytope
0 1 0 1 0 1 0 1

1 Jannik Trappe // CTP



Cyclic Transversal Polytopes (Frede, Merkert, Kaibel [2023])

B(1) B(2) B(3) 5(4)
1 1 1 1 0
1 1 0 0 _ 0
o g 17 0 a 0
1 1 0 0 0
Special case: parity polytope
0 1 0 1 0 1 0 1

Jeroslow’s odd set inequalities ~~ Lifted odd set inequalities

1 Jannik Trappe // CTP



Cyclic Transversal Polytopes

Cyclic Transversal Polytopes Lifted Odd Set Inequalities
¢ Matching polytopes Edmond’s blossom inequalities
e Stable set polytopes Odd hole inequalities
e Cut polytopes Cycle inequalities

2 Jannik Trappe // CTP



Malevich: Painterly Realism of a Boy with a Knapsack (1917) Aussois Combinatorial Optimization Workshop 2025

Generalized assignment
and knapsack problems
in the random order model

Max Klimm

joint work with Martin Knaack

Discrete
Optimization
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+ value v; ; when packed in bin
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G e n e ra ‘ a SS i 9 n m e ﬂ t p rO b ‘ e m M. Klimm: GAP and Knapsack in the random order model 2

m bins
+ capacity C;

n items
+ value v; ; when packed in bin

© size 5; ; when packed in bin i

items arrive in random order
- packing decision immediate and irrevocable

algorithm knows only n C,
- goal is to maximize expected value

of items packed expected value of algorithm ==

. competitive ratio: .
optimal value “"ﬂ

<




Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3



Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios



Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios

secretary problem
m=1,C=1,5=1)



Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1,C=1,5=1



Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1,C=1,5=1

knapsack problem
(m = 1)



Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1,C=1,5=1

[Babaioft, Immorlica, Kempe, Kleinberg 2007]
knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]

(m = 1) 1/6.65 [Albers, Khan, Ladewig 2021]



Re ‘ ated WO rk a n d O u r reS u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1,C=1,5=1

[Babaioft, Immorlica, Kempe, Kleinberg 2007]
knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]

(m = 1) 1/6.65 [Albers, Khan, Ladewig 2021]

general assignment problem



Re ‘ ated WO rk a n d O u r res u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1,C=1,5=1

[Babaioft, Immorlica, Kempe, Kleinberg 2007]
knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]

(m = 1) 1/6.65 [Albers, Khan, Ladewig 2021]

. [Kesselheim, Radke, Tonnis, Vocking 2018]
general assignment problem
1/699 [Naori, Raz 2019; Albers, Khan, Ladewig 2021]



Re ‘ ated WO rk a n d O u r reS u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios our results

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1, C= l,SjZ 1)

[Babaioft, Immorlica, Kempe, Kleinberg 2007]
knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]

(m = 1) 1/6.65 [Albers, Khan, Ladewig 2021] l — 111(2) 1
2 652

. [Kesselheim, Radke, Tonnis, Vocking 2018]
general assignment problem
1/699 [Naori, Raz 2019; Albers, Khan, Ladewig 2021]



Re ‘ ated WO rk a n d O u r reS u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios our results

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1, C= l,SJ-Z 1)

[Babaioft, Immorlica, Kempe, Kleinberg 2007]
knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]

(m = 1) 1/6.65 [Albers, Khan, Ladewig 2021] l — 1Il(2) 1
2 652

[Kesselheim, Radke, Tonnis, Vocking 2018]

general assignment problem
p 1/699 [Naori, Raz 2019; Albers, Khan, Ladewig 2021]

fractional knapsack problem



Re ‘ ated WO rk a n d O u r reS u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios our results

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1, C= l,SJ-Z 1)

[Babaioft, Immorlica, Kempe, Kleinberg 2007]
knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]

(m = 1) 1/6.65 [Albers, Khan, Ladewig 2021] l — 1Il(2) 1
2 652

[Kesselheim, Radke, Tonnis, Vocking 2018]

general assignment problem
p 1/699 [Naori, Raz 2019; Albers, Khan, Ladewig 2021]

Karrenbauer, Kovalevskaya 2020]

fractional knapsack problem 1/4.39

Gilberti, Karrenbauer 2021]



Re ‘ ated WO rk a n d O u r reS u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios our results

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1, C= l,SJ-Z 1)

[Babaioft, Immorlica, Kempe, Kleinberg 2007]

knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]
(m — 1) 1/6.65 [Albers, Khan, Ladewig 2021] ] — 1Il(2) |
2 6.52

. [Kesselheim, Radke, Tonnis, Vocking 2018]

general assignment problem
1/699 [Naori, Raz 2019; Albers, Khan, Ladewig 2021]
Karrenbauer, Kovalevskaya 2020]
fractional knapsack problem tight 1/e
P p 1/4.39 Gilberti, Karrenbauer 2021] .




Re ‘ ated WO rk a n d O u r reS u ‘ts M. Klimm: GAP and Knapsack in the random order model 3

known competitive ratios our results

secretary problem tight l/e [Dynkin 1963; Lindley1961]
m=1, C= l,SJ-Z 1)

[Babaioft, Immorlica, Kempe, Kleinberg 2007]

knapsaCk prOblem [Kesselheim, Radke, Tonnis, Vocking 2018]
(m — 1) 1/6.65 [Albers, Khan, Ladewig 2021] ] — 1Il(2) |
2 6.52

. [Kesselheim, Radke, Tonnis, Vocking 2018]

general assignment problem
1/699 [Naori, Raz 2019; Albers, Khan, Ladewig 2021]
Karrenbauer, Kovalevskaya 2020]
fractional knapsack problem tight 1/e
P p 1/4.39 Gilberti, Karrenbauer 2021] .




B a S i C id ea Of a ‘ 9 O rith m M. Klimm: GAP and Knapsack in the random order model 4




B a S i C id ea Of a ‘ g O rith m M. Klimm: GAP and Knapsack in the random order model 4

tirst compute infeasible solution
where 1 item per bin may overlap




B a S i C id ea Of a ‘ g O rith m M. Klimm: GAP and Knapsack in the random order model 4

tirst compute infeasible solution
where 1 item per bin may overlap

discard first n/2 items




B a S i C id ea Of a ‘ 9 O rith m M. Klimm: GAP and Knapsack in the random order model 4

tirst compute infeasible solution
where 1 item per bin may overlap

discard first n/2 items

for further items

- solve LP relaxation with all items seen so far

- assign item to bins with probability
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B a S i C id ea Of a ‘ 9 O rith m M. Klimm: GAP and Knapsack in the random order model 4

tirst compute infeasible solution
where 1 item per bin may overlap

discard first n/2 items

for further items

- solve LP relaxation with all items seen so far

- assign item to bins with probability
from the LP solution

to obtain feasible solution choose with probability 1/2:
» solution without overlapping items £
- overlapping items




Fractional Chromatic Numbers from Exact Decision Diagrams

Timo Brand (TU Munich) and Stephan Held (U Bonn)

Aussois, January 6, 2025
vV

Stephan Held UNIVERSITAT



Fractional Chromatic Number

Chromatic number via stable set cover LP relaxation: fractional chromatic number
min Z Xs min Z Xs
Ses Ses
s.t. Z xs > 1 YvevVv s.t. Z xs > 1 Vv eV
SeS:ves SeS:ves
xs € {0,1} vSeS xs € [0,1] vSeS
>

B-&-P: [Mehrotra & Trick '96, Gualandi & Malucelli '10, Malaguti, Monaci & Toth '10, Cook, H. & Sewell '12]
S := set of stable sets '.

Stephan Held UNIVERSITAT



Graph Coloring with Decision Diagrams (van Hoeve '22)

X1 ! AN

@ |V|+1 layers

' \
X2 U

‘ ) (one level of arcs per vertex)
’ . , solid arc = vertex i € S
. RN dashed arc vertex | € S
/ stable sets maximal paths

X3

1

Exact decision diagrams represent stable sets exactly.
Relaxed decision diagrams may contain unstable sets (van Hoeve's focus).

4

Stephan Held UNIVERSITAT



Flow ILP on Decision Diagrams (van Hoeve '22)

Flow ILP for graph coloring:
. " 3 v
aedt(r)

s.t. > va>1 VjeV
a=(u,v):L(u)=j,0(a)=1

S v Y va=0 VueN\{rt}

acd—(u) acdt(u)

ya€{0,...,n} Vac A

X2

X3

. Covering of solid arc sets in each level

with an integral r-t-flow.

Van Hoeve reported lower bounds similar to set cover LP for relaxed decision diagrams.
Q: Which one is better?

vV

Stephan Held UNIVERSITAT



Fractional Chromatic Numbers from Exact Decision Diagrams

Theorem (Brand & H.’ 24)

In an exact decision diagram, the linear relaxation of the flow ILP determines the
fractional chromatic number xr.

Consequences

P alternative method to compute xr.

> relaxed decision diagrams provide lower bounds for xf and x.
(set cover LP requires pricing to optimality)

» Using exact decision diagrams, we could solve a previously open DIMACS instance:
x(r1000.1¢) = 98.
(Solving ILP with exact-SCIP [Eifler, Gleixner '22] in 3h).

Paper: arXiv:2411.03003, code & data archive: https://doi.org/10.60507/FK2/ZE9C3L "

Stephan Held UNIVERSITAT


https://arxiv.org/abs/2411.03003
https://doi.org/10.60507/FK2/ZE9C3L

The Power of Proportional Fairness
for Non-Clairvoyant Polytope Scheduling

Sven Jiger!  Alexander Lindermayr>  Nicole Megow?

*University of Kaiserslautern-Landau (RPTU), Germany
2University of Bremen, Germany

Combinatorial Optimization Workshop, Aussois 01/2025



(Online) Unrelated Machine Scheduling

R | ry,pmtn | ¥ w;C;

>

>
>
>
>
>

n jobs, m unrelated machines

processing requirements p;

find schedule z;;(¢) € {0,1}
preemption and migration

minimize >, w; Cj

.
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s I —

time ettt
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. . Y
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(Online) Unrelated Machine Scheduling

R | rj,pmtn | Y w;C;
» n jobs, m unrelated machines

» processing requirements p;
>

» find schedule z;(t) € {0, 1}
» preemption and migration
4

minimize >, w; Cj

Q| rj,pmtn | Y w;C;
>

.
, I —
T —

3

time ——————————————————t——+
M0 12345678 910

poyy - Y
Tblue Tgreen Cgreen Ublue

Dolue =2-2+2-14+3-14+2-2=13
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(Online) Unrelated Machine Scheduling

R | ry,pmtn | ¥ w;C;

» n jobs, m unrelated machines 1

>
> find schedule (1) € {0.1} s [T
» preemption and migration tlme(l) 1 2 3 4 5 6 7 8 9 1:0
> minimize 3, w; C; Tblue Tgreen Cgreen  Chiue
Q| rjpmtn | 3 w; G Polue =2-24+2-1+3.14+2.0=13
>

Online job arrival (onl-7) Non-clairvoyance (nclv)

job j unknown before 7; p; unknown




(Online) Polytope Scheduling Problem (PSP)

Polytope Scheduling [Im, Kulkarni, and Munagala JACM'18]
» n jobs
release dates r;, weights w;

processing requirements p;

at any time ¢, choose y(t) e P

_ ¢
Oj = al"g m|nt (ft’:O y](t/)dt/) 2 pj
minimize 3. w; Cj
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(Online) Polytope Scheduling Problem (PSP)

Polytope Scheduling

| 2

vVVvy VvVVYyYVvVyYy

n jobs
release dates r;, weights w;

processing requirements p;

[Im, Kulkarni, and Munagala JACM'18]

at any time ¢, choose y(t) e P

C; = arg min, (f:/:O yj(t/)dt/)
minimize Zj w; G

> pj

Unrelated Machine Scheduling is a PSP with the polytope (before projection)

{(y’ SC) c @gé(mxn)

m n m
yj = Zsijxijvjv Zxﬁ < 1Vi, Z%’ = 1Vj} '
i=1 =1 =1

2/6



Non-Clairvoyant Scheduling

We say an online algorithm is

if ALG(I) < p- OPT([) for all I.

Theorem (Motwani, Phillips, Torng '94) ]

There is
pletion time on a single machine.

non-clairvoyant algorithm for minimizing the total com-

3/6



Non-Clairvoyant Scheduling
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Non-Clairvoyant Scheduling

We say an online algorithm is if ALG(I) < p-OPT(I) for all I.

Theorem (Motwani, Phillips, Torng '94) ]

There is non-clairvoyant algorithm for minimizing the total com-
pletion time on a single machine.

Adversarial strategy: ensure that no job finishes until time 1; then complete all.
n

| |
0 1 1
ALG(I) > n OPT(I)=4in+3
Ratio approaches 2 if all jobs receive the — Round-Robin [MPT94]

From the jobs perspective, we seek
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Proportional Fairness

Fair allocation and : Fisher markets [Eisenberg and Gale '59], one-sided matching
markets [Jain and Vazirani '10] [Garg, Trobst, Vazirani '22]

[Nash 1950, Eisenberg & Gale 1959, Kaneko & Nakamura 1979]

1/ 3w
PF(J) argmax el = arg max w; log y; .
j 'j j

yeP jeJ yeP jeJ

At any time t, schedule PF(J(t)) on set of available jobs J(). [Im, Kulkarni, Munagala 2018]
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Proportional Fairness

Fair allocation and : Fisher markets [Eisenberg and Gale '59], one-sided matching
markets [Jain and Vazirani '10] [Garg, Trobst, Vazirani '22]

[Nash 1950, Eisenberg & Gale 1959, Kaneko & Nakamura 1979]

1/ 3w
PF(J) argmax <Hy]w’> = argmaxz w;log y; .

yeP jeJ yeP jeJ

At any time t, schedule PF(J(t)) on set of available jobs J(). [Im, Kulkarni, Munagala 2018]

is the special case of PF for 1 | pmtn | )" C}
Important subclass of PSP: (short MONPSP)

y="PF(J)and y' = PF(J') with /' C J — y; <y} VjeJ .
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Our Results

We improve the analysis of PF for PSP via and

Theorem 1

PF is 4-competitive for

Q| rj,pmtn | Y w;C; and R | 7, pmtn, s;; € {0,1} | >~ w; C; are MONPSP.

Theorem 2

PF has a competitive ratio of at most
» 2a+1 for with non-uniform release dates, and

» 2 for with uniform release dates.

» R |pmtn | > w;Cjis 1.81-superadditive.

» Q| pmtn | )" Cjis 1-superadditive.

> R |pmtn,s; € {0,1} | > C; is 1-superadditive.
» P |pmtn| ) w;C;is l-superadditive.
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Our Results

We improve the analysis of PF for PSP via PF-monotonicity and a-superadditivity:

old bounds (poly-time) our bounds

Problem onl-r; & nclv onl-r; onl-r; & nclv
PSP 128 [IKM18] 128 27
MONPSP 25.74 [IKM18]  25.74 4
R | rj,pmtn | Y w;C; 32 [IKMP14]  5.78 [CPS+96] 4.62
R | pmtn | > w;Cj 32 [IKMP14] - 3.62
R | rj, pmtn, s;; € {O, 1} | E ijj 25.74 5.78 4
R | pmtn, s;; € {0,1} | >~ G; 25.74 - 2
R | rj,pmtn, s = s; | > w;Cj 25.74 5.78

R | pmtn, s;; =s; | Y. Cj 25.74 -

6/6



Integrating routing congestion into analytic
placement

Martin Drees

Research Institute for Discrete Mathematics, Bonn



Placement and routing

_ o,

I"OV 10 I
I

o o

e o

| | =53

I o:

O _0

e Connect pins with disjoint
Steiner trees

e Minimize netlength e Global: Avoid high

e Global: Avoid high density congestion

e Place cells overlap-free



Flat analytic placement

e Minimize wirelength + \ - density__penalty

e Use variant of gradient descent



Considering routing congestion

—_—

e Extend objective function:
wirelength + A1 - density__penalty + Ao - congestion__penalty

e Given: Grid graph with congestion costs on edges

e Goal: Efficiently compute congestion costs for nets



Considering routing congestion

—

Extend objective function:
wirelength + )\ - density__penalty 4+ \o - congestion__penalty
Given: Grid graph with congestion costs on edges
Goal: Efficiently compute congestion costs for nets
Simplifications:

» Two-terminal nets (introduce Steiner vertices for larger nets)

> Pins are on vertices of grid graph (interpolate)
» Only L-shaped paths (subdivide)

4



Evaluating congestion costs efficiently

e Same congestion costs for many paths = preprocessing
e For every row and column, compute consecutive sums

e |-shaped paths can be efficiently computed using these




Sparse Sub-gaussian Random Projections for Semidefinite
Programming Relaxations

Lars Schewe (joint work with Monse Guedes-Ayala, Pierre-Louis Poirion, Akiko
Takeda)

Aussois 2025



Our problem

SDP-relaxations
> Powerful,
> but often very large problems



The approach

Random projections

> In general: Projections to small spaces approximately preserve distances.
> Can be exploited for various optimization algorithms

Our case
> Projecting the matrix variable of an arbitrary SDP
min (C, X) min (PCP',Y)
st. (A, X)=b; ie{l,..m}, st. (PAPT,Y)Y=b; ie{l,.. m},

X =0 Y =0



Results

> Bounds on the projection error
> Able to reconstruct feasible solutions
> Works reasonably well for problems with few constraints



Paper

Sparse Sub-gaussian Random Projections for Semidefinite Programming Relaxations
Monse Guedes-Ayala, Pierre-Louis Poirion, Lars Schewe, Akiko Takeda

https://arxiv.org/abs/2406.14249


https://arxiv.org/abs/2406.14249

Bonus: Solving real-world optimization problems in electricty
transmission networks

Cannot present my projects (yet)

> ...butlam happy to talk about it.

Ask me about electricity networks!
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Something (surprising?) about the assignment problem

Marco Di Summa

> Assignment problem: Given a matrix A € R"*", select n elements —one per row
and per column— that maximize the sum of the entries of A.

» Let d = rank(A). Then A= CP with C € R"™*“ and P € RI*".
Each row ¢; of C — linear function ¢;x

> Let K; = {x € RY : c;x > cpx V h}. K; is a cone in R? (and these cones form the
normal fan of a polytope).

v

» Each column p; of P — point p; € RY

» Any feasible solution to the assignment problem can be seen as assigning each
cone K; to a different point p; (i.e., translate Kj so that p; is its apex)

» If (but not “only if") the solution to the assignment problem is also optimal, the
interiors of the translated cones are pairwise disjoint.
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This can be done also when the cones do not form the normal fan of a polytope:
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l[dentifying when thresholds
from the Paris Agreement are
breached: the minmax average,
a novel smoothing approach

Why we might have breached the 1.5°C limit already in July 2023

Aussois, January 2025



When will we reach 1.5°C 7
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Approaching 1.5 °C: how will we ;
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Temperature Anomaly (°C)
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Claim : a sound methodology should give given

the natural answers when data is monotone

Purely data based methodologies:
moving average, LOESS, ...
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First attempt : [sotonic Regression

Our question has a clear answer only when the time series is
montonously increasing. So why not

computing the closest time series with that property ?
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1.5

Properties of the
Isotonic regression

Temperature Anomaly (°C)

0,5
* Interval decomposition o kR
« Constant within RE S
* Strictly increasingacross @ grEE8iBaSEnaBI B asREEERE S
* Within an interval 1
- Monthly Data -1 year moving average

* The interval value is the average
of the data within the interval

* Within the interval, the data is decreasing in the following sense

-=20 years moving average—Isotonic Regression

for j e m,n—1,Tn; > Tit1n

* The endpoint n of the interval [m,n] is the minimizer of Tm,j for ] > m

21 Best MJ, Chakravarti N. Active set algorithms for isotonic regression; a unifying framework.
Math Prog 1990;47:425-39.



MinMax Average

* Intuition (necessary conditions) : Reaching the threshold L « for good » in period i means
*Tiiv1 > L
* 1iiqa > L
c .. up to period i+K-1

Tr 2  min T; p
) ) — ( . .
pelii+K—1] T if 1 = M,

—K K . K S K —K
T, = max T;, TE _ 4 T4 ity <TiZy <715,
pE[z,z—l—K—l] (4 I@I( lf TZIE]_ < I@I()

if 7K, > T, .
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Temperature Anomaly (°C)
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Temperature Anomaly (°C)

The recent period : 1970 - 2023

e Each constant interval
spans 1 or 2 ups and down
(nearly by construction)

* Big EI Nind in ‘97-"98 and in
‘15-'16.

e « Hiatus » of 2001-2013
R BN * « Hiatus » of 2016-2023
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El Nin® projections : very hard

Model Predictions of ENSO from Sep 2024
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Maximum difference between k-months
moving and minmax averages

k  Timing Average Minmax Difference '23-"24 Implied lower bound
1 3/1990 1.05 0.67 0.38 1.88 1.50
3 1-3/2016 1.61 1.29 0.32 1.79 1.47
6 12/1972-5/1973  0.57 0.32 0.25 (tie w 1998,2016) 1.75 1.50

12 9/1997-8/1998 1.04 0.85 0.19 1.69 1.50

Average July 2023 — September 2024 : 1.68°C

For the July 2023 minmax average to be below
1.5°C, all these records would need to be broken



Conclusion

* Many ways to smooth out up-and-downs, but some make more sense
(less assumptions, closer to meaning of “threshold” in English, closer
to data)

 We'll know for sure if we have passed 1.5°C in 2023 only after the end
of the next La Nina, so probably in 2026 or 2027.

* We might pass the threshold in some datasets and not others, but most
datasets differ by just a constant

* At the current rate of temp increase (+0.25°C/decade), we’ll breach
the hard +2°C threshold of the Paris agreement in 2043 already



N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZA\YZA\YZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

JANVIANVIANVIANVIANVIANVIANYS

On b-closures of polyhedra |




For b € Z" and fixed matrix A let:

P(b) =[x e R" : Ax < b},

This talk: "finiteness" of cutting planes closures and
convex hulls for the associated infinite family of
polyhedra.



Approximating the Gomory Mixed-Integer Cut
Closure Using Historical Data

EX A M P |- E Berkay Becu!, Santanu S. Dey!, Feng Qiu?, and Alinson S. Xavier?

! Georgia Institute of Technology, Atlanta, GA, USA
bbecu3@gatech.edu,santanu.dey@isye.gatech.edu
2 Argonne National Laboratory, Lemont, IL, USA {fqiu,axavier}@anl.gov

Theorem 1. Let I' be the lattice generated by rational vectors b, ..., b* € Q™.
Consider the infinite family of instances corresponding to I' as described in (5).

Then there exists a finite set A C R™, such that the GMIC closure of every
instance IP(y) can be obtained using aggregation multipliers in A, that is:

G(IP(y)) = (] GMIC(IP(7),) Vye€ I
AEA

There exists a finite set of aggregations that define the Gomory

Mixed-Integer closure (GMIC) for any polyhedron in the infinite
family.



Tl-lE b-l-lULL OF AN INTEGER PROGRAM

e g o
EX A M P LE CORE, Umversiu‘ Callmliqae de l.ouvam Lammn-la Neuve, Belgium
There exist functions f',..., f! such that

P (D)
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The integer hull of any polyhedron in the infinite family is
defined by “finitely” many additional inequalities.



| CORE RESULT: STRUCTURE OF POLYHEDRA IN THE FAMILY

There exist b!,..., bl e 7" s.t. for any b e Z":
P(b) = P(b") + z,
forsomef=1,..., T and z, € Z".

Implications: we generalize Becu et al.’s and Wolsey'’s
results for any reasonable closure and convex hull.



“FINITENESS™ OF T-BRANCH CLOSURES (ex: T=1,5PLITS)

SC(P(b)) = ﬂ conv(P(b) \ §) = m conv(P(b") \ (S — z)) + 2
SeS SeS

There is a finite list of split sets such that the split closure
of any P(b) is defined by these splits translated by z,.

Conclusion: finite up to translation.



| FINITENESS OF K'LATTICE CLOSURES (L IS A MIXED-INTEGER LATTICE)

= m conv(P( ﬂ conv(P(b")N L) + 2
LeL LeL

There is a finite list of lattices such that the lattice closure
of any P(b) is defined by these lattices.

Conclusion: truly finitely defined.



| THE INTEGER HULL IS “FINITELY" DEFINED

P(b) = Py (b") + 2,

The integer hull of any polyhedron in the infinite family is
defined by “finitely” many additional inequalities

Conclusion: finite up to r.h.s. translation.



Analyzing Election Data for Polarization:
A Question About Formulations
Moon Duchin, David Shmoys, Kris Tapp

Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space

Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head

Borda Pessimistic
Borda Average
3 OPT MODELS: Discrete k-Median Where Each Centroid is Embedding of a Cast Ballot

Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot
Continuous k-Median



Analyzing Election Data for Polarization:
A Question About Formulations
Moon Duchin, David Shmoys, Kris Tapp

FRAMEWORK Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space
Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head — embed in “n choose 2” dimensions, where each dimension
corresponds to a pair of candidates i <jand itis
+1if i is preferred to j; -1 if j is preferred to i; O if neither i nor j listed
Borda Pessimistic — embed in n dimensions, where each dimension
corresponds to a candidate i and if it is
n-j means that it is the jth preferred candidate; O if not on ballot
Borda Average — embed in n dimensions, where each dimension
corresponds to a candidate i and if it is
n-j means that it is the jth preferred candidate; z if not on ballot

where z is set so that each embedded point sums to (n-1)+(n-2)+...+1
EXAMPLE: n=4 (candidates {1,2,3,4}) Ballot: 3>1 H2H=(1, -1, 1,-1,0, 1)
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FRAMEWORK Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space
Consider resulting clusters with respect to given optimization model
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corresponds to a pair of candidates i <jand itis
+1if i is preferred to j; -1 if j is preferred to i; O if neither i nor j listed
Borda Pessimistic — embed in n dimensions, where each dimension
corresponds to a candidate i and if it is
n-j means that it is the jth preferred candidate; O if not on ballot
Borda Average — embed in n dimensions, where each dimension
corresponds to a candidate i and if it is
n-j means that it is the jth preferred candidate; z if not on ballot

where z is set so that each embedded point sums to (n-1)+(n-2)+...+1
EXAMPLE: n=4 (candidates {1,2,3,4}) Ballot: 3>1, BP = (2, O, 3, 0)




Analyzing Election Data for Polarization:
A Question About Formulations
Moon Duchin, David Shmoys, Kris Tapp

FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space
Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head — embed in “n choose 2” dimensions, where each dimension
corresponds to a pair of candidates i <jand itis
+1if i is preferred to j; -1 if j is preferred to i; O if neither i nor j listed
Borda Pessimistic — embed in n dimensions, where each dimension
corresponds to a candidate i and if it is
n-j means that it is the jth preferred candidate; O if not on ballot
Borda Average — embed in n dimensions, where each dimension
corresponds to a candidate i and if it is
n-j means that it is the jth preferred candidate; z if not on ballot

where z is set so that each embedded point sums to (n-1)+(n-2)+...+1
EXAMPLE: n=4 (candidates {1,2,3,4}) Ballot: 3>1; BA =(2, .5, 3, .5)




Analyzing Election Data for Polarization:
A Question About Formulations
Moon Duchin, David Shmoys, Kris Tapp

Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space

Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head

Borda Pessimistic
Borda Average

3 OPT MODELS: Discrete k-Median Where Each Centroid is Embedding of a Cast Ballot

minimize
Z Z w;d(%, J)T;;

i€C jeD

Zyz - k’

zi; < Yi, foreachie€ C, 5 € D,
z;; € {0,1}, wv; € {0,1}, for eachi € C, j € D.
C =D = embeddings of cast ballots  d(i,j) = L1 distance between embeddings of i & | w(i) = # of ballots cast for i

subject to the constraints
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FRAMEWORK Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space

Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head

Borda Pessimistic
Borda Average

3 OPT MODELS: Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot

T minimize
when n=15 i€C jED

there are too subject to the constraints

> vi=k,
many legal e
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z;; € {0,1}, wv; € {0,1}, for eachi € C, j € D.
C = embeddings of cast ballots D = embeddings of legal ballots d(i,j) = L1 distance between embeddings of i & j w(i) = # ballots for
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FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space

Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head

Borda Pessimistic
Borda Average
3 OPT MODELS: Continuous k-Median w.r.t. L1 metric




Analyzing Election Data for Polarization:
A Question About Formulations
Moon Duchin, David Shmoys, Kris Tapp

FRAMEWORK Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space

Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head

Borda Pessimistic
Borda Average
3 OPT MODELS: Continuous k-Median w.r.t. L1 metric

THIS IS A DISCRETE OPTIMIZATION PROBLEM!

IF A SET OF POINTS IS ASSIGNED TO SAME CLUSTER

(BY ASSIGNMENT VARIABLES)

OPTIMAL CENTROID IS:

FOR EACH DIMENSION

MEDIAN VALUE IN THAT DIMENSION
(I.E., ACOUNTING PROBLEM)
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Analyzing Election Data for Polarization:
A Question About Formulations
Moon Duchin, David Shmoys, Kris Tapp

FRAMEWORK Given full set of cast ballots in an election using rank choice voting
Note: a ballot with n candidates is a sorted list of a subset of candidates
Embed each ballot in a given metric space
Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
Borda Pessimistic
Borda Average
3 OPT MODELS: Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot
CAN HANDLE LIKE CONTINUOUS k-MEDIAN!
“CONTINUOUS CENTROID” BUT CONSTRAINED TO BE LEGAL BALLOT

QUESTION: PREVIOUS USE OF THIS APPROACH?
ANALYSIS OF >1000 SCOTTISH ELECTIONS IN PROGRESS!



On fractional tree-independence-number-fragility

Andrea Munaro (University of Parma)
January 6th, 2025

Contains joint works with:
« E. Galby (Chalmers University of Technology) and S. Yang (Queen’s University Belfast)
« C.Dallard (University of Fribourg), M. Milani¢ (University of Primorska) and S. Yang (Queen’s University Belfast)



Claim: Fractional tree-a-fragility allows to unify and extend a large
number of PTASes on both sparse and dense graph classes




Planar graphs and unit disk graphs

The following problems admit a PTAS:

1. Find max independent set in planar graph (Baker 1983)
~ Layering technique

2. Find max number of pairwise non-intersecting disks in a collection of unit disks in R?

(Hochbaum, Maass 1985)
~ Shifting technique
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Planar graphs and unit disk graphs

The following problems admit a PTAS:

1. Find max independent set in planar graph (Baker 1983)
~ Layering technique

2. Find max number of pairwise non-intersecting disks in a collection of unit disks in R?

(Hochbaum, Maass 1985)
~ Shifting technique

Common theme: solve small subproblems via dynamic programming

Intersection graph ~~ jump from
geometric to graph-theoretic world




Motivating questions

Is there any underlying graph-theoretic reason for the existence of PTASes
for INDEPENDENT SET on these seemingly unrelated graph classes?

Is there a general notion under which PTASes using Baker’s technique can
be obtained? (Grigoriev, Bodlaender 2007)




Baker’s technique

Theorem (Vertex Decomposition Theorem, Baker 1983)

Given a planar graph G and k € N, V(G) can be partitioned into k (possibly empty) sets
X1, ..., Xxinsuch a way that, foreveryi € {1, ..., k}, tw(G—X;) = O(k).

Moreover, such a partition together with tree decompositions of width O(k) of the
respective subgraphs can be computed in polynomial time.
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Baker’s technique

Theorem (Vertex Decomposition Theorem, Baker 1983)

Given a planar graph G and k € N, V(G) can be partitioned into k (possibly empty) sets
X1, ..., Xxinsuch a way that, foreveryi € {1,..., k}, tw(G— X;) = O(k).

Moreover, such a partition together with tree decompositions of width O(k) of the
respective subgraphs can be computed in polynomial time.



Beyond planar graphs: Proper minor-closed classes

VDTs exist for:

« graphs of bounded genus (Eppstein 2000)
« apex-minor-free graphs (Eppstein 2000)
« H-minor-free graphs (DeVos et al 2004; Demaine, Hajiaghayi, Kawarabayashi 2005)

~ Bidimensionality theory: link between PTASes and subexponential FPT algorithms
(Demaine, Hajiaghayi, 2005)

111 VDTs for intersection graphs of geometric objects are something too strong to ask for



Beyond proper minor-closed classes: Efficient fractional tw-fragility

First relaxation of a VDT: Approximate partition of vertex set.



Beyond proper minor-closed classes: Efficient fractional tw-fragility

First relaxation of a VDT: Approximate partition of vertex set.

Definition (DvoFak 2016)

A graph class § is efficiently fractionally tw-fragile if 3f: N — Nand an algorithm
that,Vr € Nand G € G, returns in time poly(|V(G)|) a collection of subsets

X1, X2, ..., Xm C V(G) such that each vertex of G belongs to at most m/r of the subsets
and moreover, for everyi € {1, ..., m}, the algorithm also returns a tree decomposition
of G — X; of width at most f(r).
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Beyond proper minor-closed classes: Efficient fractional tw-fragility

First relaxation of a VDT: Approximate partition of vertex set.

A graph class § is efficiently fractionally tw-fragile if 3f: N — Nand an algorithm
that,Vr € Nand G € G, returns in time poly(|V(G)|) a collection of subsets
X1, X2, ..., Xm C V(G) such that each vertex of G belongs to at most m/r of the subsets

and moreover, forevery i € {1, ..., m}, the algorithm also returns a tree decomposition
of G — X; of width at most f(r).

PTAS frameworks of maximization problems on efficiently fractionally tw-fragile classes

(Dvorak, Lahiri 2021; Dvorak 2022)

11 Unit disk graphs are not fractionally tw-fragile (no sublinear separators)
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Second relaxation of a VDT: Replace tw with the more powerful tree-«.

The class of intersection graphs of c-fat collections of objects in RY, for fixed d, is efficiently
fractionally tree-o-fragile.
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Second relaxation of a VDT: Replace tw with the more powerful tree-«.

Theorem
The class of intersection graphs of c-fat collections of objects in RY, for fixed d, is efficiently
fractionally tree-o-fragile.

A collection of objects is c-fat if it satisfies a sort of “low-density property”.

Slight generalization of (Chan 2003), implicitly used by (Har-Peled, Quanrud 2017).



PTAS frameworks

Let 1 be a fixed CMSO, formula expressing an h-near-monotone property.

,—[ (¢, h,\)-MAX WEIGHT INDUCED SUBGRAPH

Input: A graph G equipped with a weight function w: V(G) — Q...
Task: Find a set F C V(G) such that:

1. GIFl =,
2. w(GlF)) <c,
3. Fisof maximum weight subject to the conditions above,

or conclude that no such set exists.

o MAX WEIGHT INDEPENDENT SET
o MAX WEIGHT INDUCED MATCHING
o MAX WEIGHT INDUCED FOREST

o MAX WEIGHT INDUCED PLANAR SUBGRAPH



Given a finite family H of connected non-null subgraphs of G, a distance-d J{-packing in
G is a subfamily of subgraphs from 3 which are at pairwise distance at least d.

r—[ Max WEIGHT DISTANCE-d PACKING ]—

Input: Graph G, finite family H{ = {H;};c, of connected non-null subgraphs of G with
[V(H;)| < hforeachj € J, weight functionw: J — Q...
Task: Find a distance-d H-packing in G of maximum weight.




The following problems admit a PTAS on every efficiently fractionally tree-x-fragile class:

1. (¢, h,P)-MAX WEIGHT INDUCED SUBGRAPH;

2. MAX WEIGHT DISTANCE-2 PACKING.

MAX WEIGHT DISTANCE-p PACKING, for even p € N, admits a PTAS on:

3. every class of intersection graphs of c-fat collections of objects in RY, for fixed d;

4. every class of bounded layered tree-independence number (provided that tree
decomposition and layering are computable in poly-time).



The following problems admit a PTAS on every efficiently fractionally tree-x-fragile class:

1. (¢, h,P)-MAX WEIGHT INDUCED SUBGRAPH;

2. MAX WEIGHT DISTANCE-2 PACKING.

MAX WEIGHT DISTANCE-p PACKING, for even p € N, admits a PTAS on:

3. every class of intersection graphs of c-fat collections of objects in RY, for fixed d;

4. every class of bounded layered tree-independence number (provided that tree
decomposition and layering are computable in poly-time).

Allow to generalize and extend several PTASes for:

« intersection graphs of fat objects (Chan 2003; Erlebach, Jansen, Seidel 2005)
» efficiently fractionally tw-fragile classes (DvoFak 2022; Dvorak, Lahiri 2021)
« intersection graphs of low-density objects (Har-Peled, Quanrud 2017)

Complement PTASes for unweighted minimization problems on intersection graphs of fat
objects (Dvorak, Lokshtanov, Panolan, Saurabh, Xue, Zehavi 2023)
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Definition

The layered independence number of a tree decomposition T = (T, {X¢}tcv(r)) of a
graph G is the minimum integer £ such that, for some layering (Vo, V1, . . .) of G, and for
each bag X; and layer V;, we have «(G[X; N V;]) < L.

The layered tree-independence number of a graph G is the minimum layered
independence number of a tree decomposition of G.
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Bounded layered tree-independence number

Layered tree-« generalizes layered tw (Dujmovi¢, Morin, Wood 2017)

Classes with bounded layered tree-o:

+ Graphs embeddable on a surface of b. genus with b. number of crossings per edge;
~ b. layered tw (Dujmovié, Eppstein, Wood 2017)

(g, k)-string graphs ~~ b. layered tw (Dujmovié, Joret, Morin, Norin, Wood 2018)

Intersection graphs of k-similarly-sized c-fat families of objects in R?

Unit width rectangle graphs
« g-map graphs
+ Hyperbolic uniform disk graphs

Spherical uniform disk graphs



Subexponential-time exact algorithms: Square-root phenomenon

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2020)

There exist ETH-tight 2°V™)-time algorithms for the unweighted version of many problems
on intersection graphs of similarly-sized fat objects in R,

Key property: 1 balanced separators that can be covered with O(1/n) cliques.

However, very little is known about the weighted case.

Key observation: Graph classes with bounded layered tree-o have O(1/n) tree-o.

Theorem

Let £, d € N be fixed constants, with d even. Let G be a n-vertex graph for which we can
compute, in time poly(n), a tree decomposition and a layering witnessing layered
tree-independence number at most {. Then MAX WEIGHT DISTANCE-d PACKING can be
solved in 2°0v'°e") time,



Thank you!
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A 2 + e-Approximation Algorithm for Metric k-Median

Ola Svensson

=PrL

Joint work with Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, Chris Schwiegelshohn
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» Given a set of n points X and a distance metric dist

e Findasetof kcenters C C X

e So that the distance of each point to its nearest center is minimized:
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k-Median

» Given a set of n points X and a distance metric dist

e Findasetof kcenters C C X

e So that the distance of each point to its nearest center is minimized:

min dist(x, c)
ceC

re X \

closest center to x



Example on the plane
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A classical question In combinatorial optimization

Reference Approximation factor Technique
[Bar96] O(lognloglogn) tree embeddings
[CCGGI8] O(logkloglogk) tree embeddings
|[CGTS99] 6.667 dependent LP rounding
[JVO1] 6 LMP + bi-point rounding
[JMS02, JMM 1 03] 4 LMP + bi-point rounding
[AGK™04] 3+¢ local search
[LS16] 2.733 LMP + bi-point rounding
[BPR™17] 2.675 LMP + bi-point rounding
|[CGLS23, GPST23] 2.613 LMP + bi-point rounding




A classical question In combinatorial optimization

Reference Approximation factor Technique
[Bar96] O(lognloglogn) tree embeddings
[CCGGI8] O(logkloglogk) tree embeddings
|[CGTS99] 6.667 dependent LP rounding
[JVO1] 6 LMP + bi-point rounding
[JMS02, IMM 03] 4 LMP + bi-point rounding
[AGK™04] 3+¢ local search
[LS16] 2.733 LMP + bi-point rounding
[BPR™17] 2.675 LMP + bi-point rounding
|[CGLS23, GPST23] 2.613 LMP + bi-point rounding

JMS02,JMM+03: A 2-approximation algorithm that opens k centers in expectation!



-

Theorem 1.1. For every € > 0, there is a randomized polynomial-time algorithm for k-median that returns a
solution with cost at most (2 + €)opt with high probability.

~
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Theorem 1.1. For every € > 0, there is a randomized polynomial-time algorithm for k-median that returns a
solution with cost at most (2 + €)opt with high probability.

/

\_

Theorem 1.2. For every ¢ € (0,1/6), there is a polynomial-time algorithm for k-median that returns a
solution containing at most k + O(log n/€*) many centers and of cost at most (2 + €)opt.

+

CN D

Theorem 1.3. Forany e, > 0, there exists a randomized polynomial-time algorithm that, given a ({/ logn)-
stable k-median instance, returns a solution of cost at most (2 + O(e) )opt with high probability.

N N




Closing the gap

Reference Approximation factor Technique
[Bar96] O(lognloglogn) tree embeddings
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Theorem 1.1 2+¢€ LMP interpolation + stable algorithm




Closing the gap

Reference Approximation factor Technique
[Bar96] O(lognloglogn) tree embeddings
[CCGGI8] O(logkloglogk) tree embeddings
[CGTS99] 6.667 dependent LP rounding
[JVO1] 6 LMP + bi-point rounding
[TMS02, MM 1 03] 4 LMP + bi-point rounding
[AGK™04] 3+¢ local search
[LS16] 2.733 LMP + bi-point rounding
[BPR™17] 2.675 LMP + bi-point rounding
[CGLS23, GPST23] 2.613 LMP + bi-point rounding
Theorem 1.1 2+¢ LMP interpolation + stable algorithm

NP-hard to do better than 1+2/e

Integrality gap of standard LP is at least 2
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BEST
EMPLOYERS

2024

EPFL, the Swiss Federal Institute of Technology in Lausanne, is one of the most dynamic university campuses in Europe and ranks among the top
20 universities worldwide. The EPFL employs more than 6,500 people supporting the three main missions of the institutions: education, research
and innovation. The EPFL campus offers an exceptional working environment at the heart of a community of more than 17000 people, including

over 12,500 students and 4,000 researchers from more than 120 different countries.

Postdoctoral position in the Theory Group

Mission
Your mission is to perform research within the theory of computation group at EPFL. Specific areas of research include
combinatorial optimization, approximation algorithms, online algorithms, theoretical foundations of big data analysis (sublinear

algorithms, streaming, etc.), (quantum) computational complexity (proof complexity, communication complexity, etc.), and quantum
cryptography.

Brilliant and vibrant theory group that covers complexity, qguantum, algorithms,
game theory, theory of ML ... and includes faculty E. Abbe, A. Chiesa, Andres
Christi, F. Eisenbrand, M. G6ds, M. Kapralov, O. Svensson, and last but not

least T. Vidick.



Set Covering and the Replication Conjecture

Gerard Cornuejols*?

1Carnegie Mellon University — United States

Abstract

Analogous to perfection in antiblocking theory is the notion of ”packing property” in
blocking theory. A key insight on perfect graphs is the famous replication lemma proved
by Laci Lovasz in 1972. In 1993, Michele Conforti and I proposed an analogous replication
conjecture when the packing property holds. This conjecture is still open. This talk covers
some recent developments related to the replication conjecture.

*Speaker

sciencesconf.org:cow25:601774



Benchmarking challenges for quantum optimization:
the intractable decathlon

Many authors; presented by Giacomo Nannicini
University of Southern California

January 6-10, 2025

Many authors (many institutions) The intractable decathlon January 6-10, 2025



Using quantum computers for optimization

State of quantum optimization research

Continuous optimization:
@ Very active.
@ Rigorous complexity analysis.

@ Requires fault tolerance.

Discrete optimization:
@ Few rigorous complexity analyses.
@ Plenty of heuristics.

@ Many algorithms are designed for noisy devices and have been numerically
tested already.

What discrete optimization problems should we use to benchmark the
performance of quantum optimization algorithms?

Many authors (many institutions) The intractable decathlon January 6-10, 2025
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The intractable decathlon

No. Name Description

1 Marketshare Multi-dimensional subset-sum

2 LABS Low autocorrelation binary sequences

3 Birkhoff Birkhoff decomposition

4 Steiner Steiner tree packing in graphs (VLSI Design/Wire Routing)
5 Sports Sports Tournament Scheduling (STS)

6 Portfolio Multi-period Portfolio optimization with transaction costs
7 Stable-Set Unweighted Maximum Independent Set (MIS)

8 Network Communications Network design problem

9 Routing Capacitated vehicle routing problem (CVRP)
10 Topology Graph topology design (Node-Degree-Diameter problem)

These problems have varying characteristics. All of them are extremely difficult for
exact classical algorithms already at system sizes ~ 102 to 10°.

Many authors (many institutions) The intractable decathlon January 6-10, 2025



“Quantum optimization benchmarking challenges” repo

We provide a repository with instances, guidelines, pointers to state-of-the-art
algorithms, baseline results, updated results (e.g., best solutions, gap), ensuring:

o Comparability of used methods;
@ Reproducibility of the respective solutions;
@ Trackability of algorithmic and hardware improvements.

The benchmark is model-independent: we do not prescribe the model used to
solve the problem.

Repository: https://git.zib.de/bzfkocht/gbench/. Out soon!

These problems cannot be solved with current technology.
We need your help to push the boundary of what optimization
algorithms can do!

Many authors (many institutions) The intractable decathlon January 6-10, 2025


https://git.zib.de/bzfkocht/qbench/

Quotient sparsification for submodular functions

Kent Quanrud*

Abstract

Graph sparsification has been an important topic with many structural and algorithmic
consequences. Recently hypergraph sparsification has come to the fore and has seen exciting
progress. In this paper we take a fresh perspective and show that they can be both be derived
as corollaries of a general theorem on sparsifying matroids and monotone submodular functions.

Faster single-source shortest paths with
negative real weights via proper hop distance”

Yufan Huang Peter Jin Kent Quanrud

December 10, 2024

Abstract

The textbook algorithm for single-source shortest paths with real-valued edge weights runs
in O(mn) time on a graph with m edges and n vertices. A recent breakthrough algorithm by
Fineman [Fin24] takes O(mn®/?) randomized time. We present an O(mn?*/®) randomized time
algorithm building on ideas from [Fin24].
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Quotient sparsification for submodular functions

Kent Quanrud*

Abstract

Graph sparsification has been an important topic with many structural and algorithmic
consequences. Recently hypergraph sparsification has come to the fore and has seen exciting
progress. In this paper we take a fresh perspective and show that they can be both be derived
as corollaries of a general theorem on sparsifying matroids and monotone submodular functions.

Faster single-source shortest paths with
negative real weights via proper hop distance*

Yufan Huang Peter Jin Kent Quanrud
December 10, 2024

Abstract

The textbook algorithm for single-source shortest paths with real-valued edge weights runs
in O(mn) time on a graph with m edges and n vertices. A recent breakthrough algorithm by
Fineman [Fin24] takes O(mn®/?) randomized time. We present an O(mn?*/%) randomized time
algorithm building on ideas from [Fin24].
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Single-Source Shortest Paths with
Negative Real Weights in O(mn®?) Time

Better Than YeiTbook

Jeremy T. Fineman
Georgetown University
jf4740@georgetown.edu

Abstract

This paper presents a randomized algorithm for the problem of single-source shortest paths
on directed graphs with real (both positive and negative) edge weights. Given an input graph
with n vertices and m edges, the algorithm completes in O(mn®/?) time with high probability.
For real-weighted graphs, this result constitutes the first asymptotic improvement over the classic
O(mn)-time algorithm variously attributed to Shimbel, Bellman, Ford, and Moore.

Faster single-source shortest paths with
negative real weights via proper hop distance®

Yufan Huang Peter Jin Kent Quanrud
July 9, 2024

Abstract

The textbook algorithm for single-source shortest paths with real-valued edge weights runs
in O(mn) time on a graph with m edges and n vertices. A recent breakthrough algorithm by
Fineman [Fin24] takes O(mn®?) randomized time. We present an O (mn*/®) randomized time
algorithm building on ideas from [Fin24].
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ON A ROUTING PROBLEM*
By RICHARD BELLMAN (The RAND Corporation)

Summary. Given a set of N cities, with every two linked by a road, and the times
required to traverse these roads, we wish to determine the path from one given city to
another given city which minimizes the travel time. The times are not directly pro-
portional to the distances due to varying quality of roads and varying quantities of
traffic.

The f ional equati hnique of dynamic ing, bined with approxi-
mation in policy space, yields an iterative algorithm which converges after at most
(N — 1) iterations.

Single-Source Shortest Paths with
Negative Real Weights in O(mn®?) Time

Jeremy T. Fineman
Georgetown University
jf4740georgetown.edu

Abstract

This paper presents a randomized algorithm for the problem of single-source shortest paths
on directed graphs with real (both positive and negative) edge weights. Given an input graph
with n vertices and m edges, the algorithm completes in O(mn®/) time with high probability.
For real-weighted graphs, this result constitutes the first asymptotic improvement over the classic
O(mn)-time algorithm variously attributed to Shimbel, Bellman, Ford, and Moore.

Faster single-source shortest paths with
negative real weights via proper hop distance®

Yufan Huang Peter Jin Kent Quanrud

July 9, 2024

Abstract

The textbook algorithm for single-source shortest paths with real-valued edge weights runs
in O(mn) time on a graph with m edges and n vertices. A recent breakthrough algorithm by
Fineman [Fin24] takes O(mn®/?) randomized time. We present an O (mn/%) randomized time
algorithm building on ideas from [Fin24]
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“ Summary. Given a set of N cities, with every two linked by a road, and the times
required to traverse these roads, we wish to determine the path from one given city to
another given city which minimizes the travel time. The times are not directly pro-
portional to the distances due to varying quality of roads and varying quantities of
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Single-Source Shortest Paths with
Negative Real Weights in O(mn®?) Time

Jeremy T. Fineman
Georgetown University
jf474@georgetown. edu

Abstract

This paper presents a randomized algorithm for the problem of single-source shortest paths
on directed graphs with real (both positive and negative) edge weights. Given an input graph
with n vertices and m edges, the algorithm completes in O(mn®/®) time with high probability.
For real-weighted graphs, this result constitutes the first asymptotic improvement over the classic
O(mn)-time algorithm variously attributed to Shimbel, Bellman, Ford, and Moore.

Faster single-source shortest paths with
negative real weights via proper hop distance®

Yufan Huang Peter Jin Kent Quanrud

July 9, 2024

Abstract

The textbook algorithm for single-source shortest paths with real-valued edge weights runs
in O(mn) time on a graph with m edges and n vertices. A recent breakthrough algorithm by
Fineman [Fin24] takes O(mn®/?) randomized time. We present an O (mn/%) randomized time
algorithm building on ideas from [Fin24]
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Optin;ihizing

Column_
Generation

Advanced Branch-Cut-and-Price Algorithms

Eduardo Uchoa
Universidade Federal Fluminense
INRIA International Chair (2022-2026)

Artur Pessoa
Universidade Federal Fluminense

Lorenza Moreno
Universidade Federal de Juiz de Fora



Column Generation (CG)

Method to solve Linear Programs (LPs) with a very large number of variables

Applied to important classes of Integer Programs (IPs), leading to
Branch-and-Price (BP) and Branch-Cut-and-Price (BCP) algorithms:

Vehicle routing

Cutting and packing

Airline planning

Timetabling

Crew scheduling

Graph coloring

Many others



The Paradox

Column Generation is thriving:
e Hundreds of relevant papers published annually

e Modern advanced BCP algorithms much more powerful than BPs of 20 years
ago
e Routinely applied in industry for million-dollar optimization problems

Yet, it remains a “well-kept secret”



Key Challenges

e Educational Barriers:

e No textbook (until very recently!)

e Many key techniques are scattered in research articles

e Non-standardized notation and terminology across literature
e Implementation Challenges:

e Commercial solvers don't support Branch-and-Price

e Open-source frameworks have limitations

e May require custom coding for state-of-the-art performance

e Result: Technique is underutilized despite its potential



BRANCH-AND-PRICE

JACQUES DESROSIERS
MARCO LUBBECKE

GUY DESAULNIERS

JEAN BERTRAND GAUTHIER

Eduardo Uchoa | Artur Pessoa | Lorenza Moreno



“Optimizing with Column Generation”

Part | - Column Generation Basics:
e Five chapters covering CG principles in-depth (no contradiction!)

e Finished (300+ pages) and available for download at
https:/optimizingwithcolumngeneration.github.io/




“Optimizing with Column Generation”

Part Il - Topics in Column Generation:

e Eight chapters covering the most advanced techniques in state-of-the-art
BCP algorithms

e Expected to be finished by the end of 2025



OJMO: a Diamond Open Access journal in
Mathematical Optimization

Michael Poss

o = = E A
Michael Poss OJMO: a Diamond Open Access journal



The beginnings ...
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The publishing oligopoly

@ Electronic publishing and IATEX significantly reduced the costs

@ Led to nearly open and free publications?
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The publishing oligopoly

@ Electronic publishing and IATEX significantly reduced the costs

@ Led to nearly open and free publications?

@ Unfortunately, they led instead to ever-increasing profit margins:
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The publishing oligopoly

@ Electronic publishing and IATEX significantly reduced the costs
@ Led to nearly open and free publications?

@ Unfortunately, they led instead to ever-increasing profit margins:

Profit margins in 2020

Elsevier's profit margins exceeded those of Apple, Google, Facebook and Zoom

50%

IS
&
£:3

3

20% 22

2%

Net income as percentage of revenue
3
3

Tesla  Amazon  RELX Apple  Alphabet CocaCola  Zoom  Microsoft Facsbool
i ] sci

blising)

Sources RELX Investor Presentation 2021, macrofrends.net | Edhroelts
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The publishing oligopoly
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Aversion of this story appeared in Science, Vol 386, Issue 6726. @

O

RELATED PODCAST

Making Latin American science visible, and advances in cooling tech
Y SARAH CRESPI, BRENT GROCHOLSKI, SOFIAMOUTINHO + PODCAST - 05 DEC 2024

This story is part of a News series about global equity in science. READ MORE >

n 2016, Marcus Oliveira, a biochemist at the Federal University of Rio de Janeiro,

submitted a study on the metabolism of a tropical parasite to a mainstream open-

access journal based in the United States. It was the ninth paper he had published

in the journal, for which he had also volunteered time as a peer reviewer for
dozens of articles. But this time he could not afford the $1200 article-processing charge
(APC), as his grant funding was nearly depleted. He requested the fee waiver the journal
says it offers to authors from lower income countries, but the negotiations were tense.
“I felt morally assaulted,” he says. “At some point, the journal requested I send them a
personal bank statement to prove I didn’t have the means.”

Michael Poss

MANAGEMENT SCIENCE

Dear member of the Management Science community,

In 2019, under the leadership of former Editor-in-Chief David Simchi-Levi and with broad
support from the journal's editorial board and community, Management

Science introduced a data and code disclosure policy. This initiative aimed to “assure
the availability of the material necessary to replicate the research published in the journal®
and “advance the research in the fields covered by the journal.”

Since this policy’s implementation, these measures have enabled the journal to make
significant progress in ensuring the reproducibilty of published articles. For an in-depth
analysis, see ibility in Science.” A substantial number of the
papers in Management Science are impacted by the policy.

Starting in early 2025, ill start charging a fee to ensure
the reproducibility initiative is sustainable. Before launching this pilot, we are seeking
feedback from you, as a valued member of our author community.

The survey will take approximately 5 minutes to complete. Your responses are completely
anonymous — your identity will not be recorded or disclosed.

Begin Survey

Thank you in advance for sharing your insights and helping us shape the future
of Management Science.

Matthew Walls
INFORMS Director of Publications
p: 443-757-3571 | e: mwalls @informs.org.

o)




The uprising

17062 Researchers Taking a Stand. see the sisr

Academics have protested against Elsevier's business practices for
years with little effect. These are some of their objections:

1. They charge exorbitantly high prices for subscriptions to
individual journals.

Z. Inthe light of these high prices, the only realistic option for
many libraries is to agree to buy very large "bundles”, which
will include many journals that those libraries do not actually
want. Elsevier thus makes huge profits by exploiting the fact
that some of their journals are essential.

w

They support measures such as SOPA, PIPA and the Research
Works-Act, that aim to restrict the free exchange of
information.

Sir Tim Gowers,
Fields Medal 1998 http://www.thecostofknowledge.com/

Taken from the presentation of Marie Farge
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Diamond Open Access today

Excellent free journals exist today, for instance;

Machine learning, Artificial intelligence

e Journal of Artificial Intelligence Research (JAIR)

@ Journal of Machine Learning Research (JMLR)
Theoretical Computer Science

@ Advances in Combinatorics

@ TheoretiCS

@ Theory of Computing

@ Innovations in Graph Theory (just started)

And many more: https://freejournals.org/current-member-journals/

Michael Poss OJMO: a Diamond Open Access journal
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Open Journal of Mathematical Optimization (OJMO)
Steering Committee

@ Dimitris Bertsimas
@ Martine Labbé

@ Eva K. Lee

@ Marc Teboulle

Area Editors

@ Continuous Optimization - David Russell Luke

@ Discrete Optimization - Sebastian Pokutta

e Optimization under Uncertainty - Guzin Bayraksan

e Computational aspects and applications - Jérome Malick

As of today
@ ranked Q2 at Scimago in Control and Optimization
@ indexed in zbMATH, Scopus, dblp, MathSciNet
@ 5 issues, 8-10 papers per issue
@ >20 papers in the pipeline

Visit https://ojmo.centre-mersenne.org/

Michael Poss OJMO: a Diamond Open Access journal
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Price of Anarchy for Graphic
Matroid Congestion Games

Marc Uetz, University of Twente

(with Wouter Fokkema and Ruben Hoeksma)



Graphic Matroid Congestion Game

* Given graph G = (V,E)
* Players i select spanning tree T;
» Affine cost function per edge e

* No. of players n, on edge e,
cost c,(n,) = a, ny,+ b,

c(n,) = n, for all edges e



Marc Uetz — PoA Graphic Matroid Congestion Games

Graphic Matroid Congestion Game

* Given graph G = (V,E)
* Players i select spanning tree T;
» Affine cost function per edge e

* No. of players n, on edge e,
cost c,(n,) = a, ny,+ b,

Total cost ), c(T;) = 8

c(T,) =4,
c(T,) =4



Marc Uetz — PoA Graphic Matroid Congestion Games

Graphic Matroid Congestion Game

* Given graph G = (V,E)
* Players i select spanning tree T;
» Affine cost function per edge e

* No. of players n, on edge e,
cost c,(n,) = a, ny,+ b,

Total cost ), c(T;) =6

c(Ty) =3,
c(T,) =3



Marc Uetz — PoA Graphic Matroid Congestion Games

Graphic Matroid Congestion Game

* Given graph G = (V,E)
* Players i select spanning tree T;
» Affine cost function per edge e

* No. of players n, on edge e,
cost c,(n,) = a, n,+ b,

Total cost ), c(T;) =6

= Price of Anarchy (PoA) > 4/3 CE?% = g
c(T,) =



Marc Uetz — PoA Graphic Matroid Congestion Games

Price of Anarchy Symmetric Congestion Games

PoA for arbitrary atomic congestion games and n players is

at most (bn—2)/(2n+ 1)
[Christodolou & Koutsoupias STOC 2005]




Marc Uetz — PoA Graphic Matroid Congestion Games

Result: Tight Lower Bound Constructions

PoA for graphic matroid congestion games and n players is

equal to (5n —2)/(2n + 1)*

[SAGT 2024]

(*) forn = 2,3,4andn —» oo



