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(Q1): Can we predict the optimal objective value before we start 
branching?

(Q2): Can we predict, during the solution process, whether or not
a solution is optimal?

The output from Q1 is used as input for the classifier that is used to 
answer Q2.

Previous work on predictions has focused on predicting the optimal solution: 
Ding et al. (2020), Nair et al. (2020), Khalil et al. (2022).

Our work is related to Berthold et al. (2018), and yields less “overly optimistic”
predictions.



blue: fraction of correctly classified samples
dark yellow: fraction of false positives
light yellow: fraction of false negatives

From Berthold et al. (2018)
Our classifiers





A Knapsack Game in Rounds

Given two agents each of them owning a set of n items.
Each item has a profit p and a weight w .

There is a knapsack with capacity c .
All information is public.

The Knapsack Game proceeds in rounds:
In each round the agents submit simultaneously one of
their items (which must fit in the current knapsack).
The item with higher e�ciency p/w wins and is packed
into the knapsack.
Each agent wants to maximize the total profit of its packed
items.

Ulrich Pferschy, joint work with Rosario Scatamacchia
(Politecnico di Torino)



A Knapsack Game in Rounds

Best Response of agent B against agent A:

unknown strategy of A =) outcome for B arbitrarily bad

list strategy of A:
A submits its items according to a predetermined list of items
(known to B)
=) best response of B is a subset of items submitted by
decreasing e�ciencies

this best response subset can be computed by Dynamic
Programming and by an ILP model (specific versions if
A follows a list sorted by decreasing e�ciencies)

no poly time response with bounded performance ratio,
even if A sticks to an ordered list strategy
(list sorted by decreasing e�ciencies).



A Knapsack Game in Rounds

In progress:
Pure Nash Equilibrium, Subgame Perfect Equilibrium,

price of anarchy / price of stability arbitrarily large.

Variant of the problem:
losing items are permanently discarded

=) additional di�culty: which item should be sacrificed?
=) best response of B not necessarily sorted.

=) ILP model for best response of B given a list of A.



Elevator pitch:
Ever wished a Lagrangian was

as easy to use as a LP?
Your wish is now granted

Antonio Frangioni1

1Dipartimento di Informatica, Università di Pisa

27th Combinatorial Optimization Workshop
Aussois (France), January 5 – 10, 2024



Have a block-structured program to solve

. . . and always wondered if Lagrangian relaxation could be competitive

Just write it as a Block with its sub-Block (recursively if needed)

Attach Solver to each sub-Block (specialised if you have them)

Attach LagrangianDualSolver to the Block, compute(), get optimal
primal (convexified) and dual

Attach *MILPSolver to the Block, compute(), get optimal primal and
dual (of continuous relaxation) – together and in parallel if you want

Change anything in Block, compute() reoptimizes, get new stu↵
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One example: SDDP + Lagrange

Mid-term (1y) stochastic energy reservoirs management, each a
short-term (1w) unit commitment ( 6= units, [HV]DC network, . . . )

Perfect for Stochastic Dual Dynamic Programming, but need duals

Either continuous relaxation of tight formulation or Lagrangian relaxation

Cherry-picked result: 60 stages (1+ year), 37 scenarios, 168 instants
(weekly UC), 83 thermals, 3 intermittent, 2 batteries, 1 hydro

Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.
Cost: Avg. / Std. 3.951e+11 / 1.608e+11 3.459e+11 / 8.903e+10

Time: 5h43m 7h54m

Time OK using ParallelBundleSolver with 5 threads per scenario

That’s 14% just changing a few lines in the configuration

A. Frangioni (DI — UniPi) SMS++ 4 Lagrangian Aussois 2025 2 / 3



All this and much more awaits you in SMS++

https://gitlab.com/smspp/smspp-project

“For algorithm developers, from algorithm developers”

Open source, extensive documentation https://smspp.gitlab.io

(but only one User’s Manual: me)

Parallel features built-in the system, all three main OSs supported

Now featuring 4 main MI*LP solvers (Cplex, Gurobi, SCIP, HiGHS)
+ a few specialised ones (flow, knapsack, 1UC, box, . . . )

Community-oriented: easy to add your own project, join the fun
A. Frangioni (DI — UniPi) SMS++ 4 Lagrangian Aussois 2025 3 / 3

https://gitlab.com/smspp/smspp-project
https://smspp.gitlab.io


Capacitated Vehicle Routing with Fixed Order (CVRP-FOR)

Open Complexity on the line

Ekin Ergen (TU Berlin)
Steven Miltenburg (VU Amsterdam)
Rene Sitters (VU Amsterdam)

Leen Stougie (CWI and VU Amsterdam)

Footer text - Faculty or Research Institute name1 



Problem setting

• n points in a metric space. 
• A depot with sufficient vehicles
• Each vehicle has capacity c
• Vehicles return to the depot
after having served a subset of 
at most c points. 
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Problem setting

• n points in a metric space. 
• A depot with sufficient vehicles
• Each vehicle has capacity c
• Vehicles return to the depot
after having served a subset of 
at most c points. 
Points are ordered!!!
On each vehicle the assigned 
points must be served in 
the order given
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Problem setting

• n points in a metric space. 
• A depot with sufficient vehicles
• Each vehicle has capacity c
• Vehicles return to the depot
after having served a subset of 
at most c points. 
Points are ordered!!!

Example with c=2, order {1,2,3,4}
Vehicle 1: 1,3
Vehicle 2: 2,4

4 Problem setting



Problem setting

• n points in a metric space. 
• A depot with sufficient vehicles
• Each vehicle has capacity c
• Vehicles return to the depot
after having served a subset of 
at most c points. 
Points are ordered!!!
• Minimize Total distance travelled

5 Problem setting



Approximation on General Metric Spaces

Hardness and Approximation6 

• CVRP-FOR on general metric spaces 
• Without FOR CVRP on general metric spaces is APX-hard and has a 1 + 𝛼 − 1

𝑐

approximation scheme (Haimovich, Rinnooy Kan 1985) for 𝛼 ≈ 3
2

the TSP 
approximation. 
Improved very recently (Blauth, Traub, Vygen 2023) to 2.4997  

• CVRP-FOR is still APX-hard (even if c=3), with a 1 + 1 − 1
𝑐

approximation

Open Problem:
Can 2-1/c be improved?

Facts of Interest: 
- Improvement of Blauth et al. does not work for CVRP-FOR 



Complexity of CVRP-FOR on the line with fixed capacity 𝑐 = 3?

Minimally Open Problem: 
For 𝑐 = 3 is CVRP-FOR on the line NP hard?

Facts of Interest: 
- CVRP-FOR on the line is NP-hard for arbitrary c. Does a PTAS exist?

- For constant c a PTAS exists for CVRP-FOR on the line (extending to 
R^d).  

Ergen & Miltenburg oral communication

Open Question7 



A PTAS for CVRP-FOR on a tree?

Open Problem: 
For constant 𝑐 ≥ 3 on a tree does a PTAS exist?

Facts of Interest: 
- For constant c a PTAS exists for CVRP-FOR on the line. 
- A PTAS exists for CVRP on a tree

Mathieu & Zhou 2022

Open Question8 



9 

Thank You!



Theoretical properties of lower and upper bounds for
the Bin Packing Problem with Setups

R. Baldacci 1, F. Ciccarelli 2, S. Coniglio 3, F. Furini 2

Hamad Bin Khalifa University
1
, DIAG, Sapienza University of Rome

2
, University of

Bergamo
3

January 6, 2025
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The Bin Packing Problem with Setups (BPPS)

The BPPS is a generalization of the Bin Packing Problem (BPP), in which the item set N is

partitioned into classes. Activating a class in a bin (i.e., packing at least one item of that class

into it) incurs an additional capacity consumption as well as a setup cost. We refer to the sets

of bins and classes as K and I , respectively.

Each item j 2 N has weight wj 2 Z+
and belongs to a class tj 2 I , while, for each class i 2 I ,

we denote by si 2 Z+
and fi 2 Z+

its setup weight and setup cost.
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Natural Formulation for the BPPS

min
(x,y,z)2{0,1}

X

k2K

✓
b zk+

X

i2I

fi yik

◆

X

k2K

xjk = 1 8j 2 N,

c zk �
X

j2N

wj xjk �
X

i2I

si yik � 0 8k 2 K ,

ytj k � xjk � 0 8j 2 N, k 2 K .

Proposition

z(LP) =

X

i2I

fi+
b

c

0

@
X

j2N

wj +
X

i2I

si

1

A

Proposition

There exist BPPS instances for which:

z(LP)

OPT

|N|!1�����! 0
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The Minimum Class-occurrence Inequalities

We propose the following family of inequalities, which we refer to as minimum

class-occurrence inequalities (MCIs):

X

k2K

yik � �i where �i =

&P
j2Ni

wj

c � si

'
8i 2 I

Proposition

z(LP) =

X

i2I

�i fi+
b

c

0

@
X

j2N

wj +
X

i2I

�i si

1

A

Proposition

For all BPPS instances it holds that:

z(LP)

OPT
�

1

2
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Upper bounds to the optimal solution value of the BPPS

Proposition

Let A be an ↵-approximation algorithm (with ↵ > 1) for the BPP. It is then possible
to derive a 2↵-approximation algorithm for the BPPS.

Sketch of the algorithm:

1. Run A to pack the items of each class separately;

2. If possible, merge pairs of bins with free available capacity.

Aussois 2025 The Bin Packing Problem with Setups January 6, 2025 5 / 6



Open research paths

• Development of an approximation algorithm specifically tailored to the BPPS;

• New classes of lower bounds or bounds derived from new families of valid
inequalities;

• E�cient set-partitioning formulations and column generation algorithms.

Thank you for your attention!

Questions?

Aussois 2025 The Bin Packing Problem with Setups January 6, 2025 6 / 6



Asymptotically Optimal Hardness for -Set 
Packing & -Matroid Intersection

k
k

Joint Work: Euiwoong Lee (U.Mich) & Ola Svensson (EPFL)

1

Theophile Thiery                                                                                                    

 27th Aussois Combinatorial Workshop   



-Set Packingk

2

Problem Statement
Let  be some integer. Given a collection of sets, each containing up to  
vertices. Find sub-collection of disjoint sets of maximum size.

k ≥ 3 k

I. Generalizes maximum matching in graph 
(when, ) and thus models higher 
dependencies in pratical applications. 

II. Benchmark problem:  listed in Karp’s list of 21-
NP complete problems for  and a special case 
of -Matroid Intersection.

k = 2

k = 3
k



Result & Consequences

3

Main Theorem
For any , and sufficiently large , the -Set Packing problem is hard 
to approximate within a factor , unless .

ε > 0 k ≥ kε k
k/(12 + ε) NP ⊆ BPP

Consequences
I. Improves over the -hardness by Hazan, Safra and Schwartz’06 — 
consistently cited for maximizing linear and submodular function over -Matroid 
Intersection, -Matchoid, -Matroid Parity.  
 
II. Asymptotically optimal result and explains the lack of substantial progress 
beyond -approximation algorithms.

Ω ( k
log(k) )

k
k k

O(k)



Brief History & Result

4

Problem Statement
Let  be some integer. Given a collection of sets, each containing up to  
vertices. Find sub-collection of disjoint sets of maximum size.

k ≥ 3 k

1

APX

Known results over time
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Result & Brief Explaination

5

 
I. Following [HSS’06], we encode satisfying assignments of -CSPs as large 
matchings. Our hyperedges correspond to constraints and labels that variables can 
take. Invariant: Two hyperedges should intersect if the assignment is not 
consistent. 
 
II. The novelty in our approach is to sparsify CSP to reduce the number of 
constraints a variable appears in (  alphabet size), which allows to design a simple 
gadget bypassing their tight construction.

k

≤

Main Theorem
For any , and sufficiently large , the -Set Packing problem is hard 
to approximate within a factor , unless .

ε > 0 k ≥ kε k
k/(12 + ε) NP ⊆ BPP



Open Questions

6

Open Questions
I. Close the Gap: A better understanding of hardness of approximation of -CSPs 
could lead to stronger hardness results. 

II. What is the complexity of approximating a monotone submodular function 
subject to a -set packing constraint? 

III. New algo/hardness for -SP in online/streaming/… settings.

k

k

k
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I. Close the Gap: A better understanding of hardness of approximation of -CSPs 
could lead to stronger hardness results. 

II. What is the complexity of approximating a monotone submodular function 
subject to a -set packing constraint? 
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I am on the job market from Fall 
2025!



Model(s) for the homogeneous (tram) usage dispatching
problem
Some remarks on work in progress

Michael Kahr� Markus Leitner� Rosario Paradiso�

�Department of Operations and Information Systems, University of Graz, Austria
�School of Business and Economics, Operations Analytics, Vrije Universiteit Amsterdam, The Netherlands

��th Aussois Combinatorial Optimization Workshop
Aussois, France, January �, ����



Problem description and Motivation

Problem description:
Given a set of trams T , a set of services S (or trips) they should
perform, and a set of parking corridors C (with either LIFO, or FIFO
queuing systems).

The objective is to assign services to trams such that their utilization
is (almost) balanced.

Motivation:
Practical: improve planning (of maintenance and investment), reduce
cost (by avoiding shunting).

Scientific: real-world problem (data from Italy), modeling FIFO and
LIFO queues, objective function structure.

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz � / �



Graph representation

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz � / �
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Graph representation

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz � / �



Event based formulation

min Cmax � Cmin

s.t.
’
22⇠

H42 = 1 84 2 E

H42  ;2 � <2 +
’
5 2D<

4

H5 2 �
’
5 2A<

4

H5 2 84 2 A, 82 2 ⇠

H42  <2 +
’
5 2A<

4

H5 2 �
’
5 2D<

4

H5 2 84 2 D,82 2 ⇠

H42 2 {0, 1} 84 2 E,82 2 ⇠

Cmax � Cmax(Øz) �
’

(4,2)2E⇥⇠:ØH42=1
�max(Øz, 4) (1 � H42) 8Øz 2 %(z)

Cmin  Cmin(Øz) +
’

(4,2)2E⇥⇠:ØH42=1
�min(Øz, 4) (1 � H42) 8Øz 2 %(z)
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Thank you!

Homogeneous (tram) usage dispatching problem, Michael Kahr, University of Graz � / �



A Linear Time Gap-ETH-Tight Approximation Scheme for
TSP in the Euclidean Plane

Tobias Mömke
University of Augsburg

Joint work with Hang Zhou

27th Aussois Combinatorial Optimization Workshop, 2025



Arora [J. ACM 1998] and Mitchell [SICOMP 1999]
(Gödel-Prize 2010):

Polynomial time (1 + Á)-approximation algorithm, polynomial

running time

Rao and Smith [STOC 1998]:

Running time (1/Á)
O(1/Á)n log n.

Bartal and Gottlieb [FOCS 2013]:

Running time 2
(1/Á)O(1)n, i.e., linear time

Kisfaludi-Bak, Nederlof, and WÍgrzycki [FOCS 2021]:

Running time 2
O(1/Á)n log n, which is GAP-ETH tight

Euclidean TSP – Known Results

2



Theorem 1
There is a randomized (1 + Á)-approximation scheme for the Euclidean TSP in R2 that runs in
time 2

O(1/Á)n in the real-RAM model with atomic floor operations.

Asymptotically tight unless the GAP-ETH is false

Same machine model as Bartal and Gottlieb

Our Result

3



Use sparsity-sensitive patching of Kisfaludi-Bak, Nederlof, and WÍgrzycki if Ø 2 crossings

Ensure su�cient potential for single crossings:

Add portals of 2-approximate solution
Long crossing edges: charge length of edge
Short crossing edges: charge approximate solution

https://arxiv.org/abs/2411.02585

Short Summary of Ideas

4

https://arxiv.org/abs/2411.02585


Connectivity via convexity:
Bounds on the edge expansion in graphs

Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele

27th Aussois Combinatorial Optimization Workshop

January 2025



Edge Expansion

h(G) = min
SµV , 1Æ|S|Æ n

2

|ˆS|
|S|

= min
x€Lx
e€x , s.t. 1 Æ e€x Æ

7n
2

8
, x œ {0, 1}n.

 formulation as a completely positive program

min ÈL, Y Í
s.t. (e€

n 0
€
n 0

€
2

)y = 1

tr(CYC€ ≠ Cyd€ ≠ dy€C€
+ fldd€

) = 0

diag(Y 12
) = 0

A
Y y
y€ fl

B

œ CP2n+3.

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 2
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doubly non-negative relaxation: CP constraint  DN N
constraint (non-negative & psd)

facial reduction: reduce dimension from 2n + 3 to n + 1.

strengthening the DNN relaxation by cutting planes

augmented Lagrangian algorithm with post-processing

relaxation yields strong lower bounds and is computationally

e�cient
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code available at:

github.com/melaniesi/CheegerConvexificationBounds.jl

n time (sec) gap (%)

moviegalaxies-52 59 21.5 0.3

highschool 70 52.4 1.7

sp-o�ce 92 89.8 2.4

game-thrones 107 108.5 0.4

revolution 141 233.7 7.9

malariagenes-HVR1 307 2620.7 4.4

.

Connectivity via convexity: Bounds on the edge expansion in graphs Timotej Hrga, Melanie Siebenhofer, Angelika Wiegele 4
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Implied Integrality in Mixed Integer Optimization

Rolf van der Hulst, Matthias Walter

I Presolving technique used by all major solvers

I Integrality of a variable is implied by the constraints
and integrality of other variables.

I Existing methods detect implied integrality of one
variable at a time.

. . .

3x + 2y + z = 4

x , y 2 Z
(z 2 Z)
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Implied Integrality in Mixed Integer Optimization

Rolf van der Hulst, Matthias Walter

I Presolving technique used by all major solvers

I Integrality of a variable is implied by the constraints
and integrality of other variables.

I Existing methods detect implied integrality of one
variable at a time.

. . .

3x + 2y + z = 4

x , y 2 Z
(z 2 Z)

Implied integrality

For polyhedron P ✓ RN and S ,T ✓ N,
conv(P \ (ZS ⇥RN\S)) = conv(P \ (ZS[T ⇥RN\(S[T )))

I Generalizes integer polyhedra (S = ;,T = N)
x

y

1/3



Fibers and Totally Unimodular submatrices

Theorem (van der Hulst, Walter)

For P ✓ RN , S ,T ✓ N, if each S-integral fiber is T -integral, then T is implied by S

x

y

I Fibers: {(x̄ , y) | By  b-Ax̄} for fixed x̄ 2 ZS .

I If and only if when S is binary

I Su�cient: B totally unimodular and b,A
integral.

I Detect network matrices, ‘easy‘ subclass of TU

2/3



Results and Outlook

I MIPLIB 2017 benchmark set, statistics of presolved problems

Method SCIP 9.0 default TU detection
Mean % of i.i. variables 1.3% 16.4%

# a↵ected instances (/240) 42 162

I Performance results are WIP, will be featured in SCIP 10

Future research and open questions:

I Characterizations for relaxations of combinatorial optimization problems
I Complexity of recognizing implied integrality

I At least co-NP hard, but no known certificate yet

3/3



Fare Zone Assignment

Lennart Kauther,
joint work with Sven Müller, Philipp Pabst, Britta Peis, and Khai Van Tran

January 6, 2025

RWTH Aachen University



Problem Description

Input:

I Traffic network G = (V , E)
I For this talk: G is a tree.

I For each commodity i :
I Start- and endpoint si and ti ,
I Maximum number of allowed tariff zone changes ui ,
I Weight wi

u = 5, w = 5 u = 2, w = 2
u = 3, w = 6

u = 1, w = 1
u = 2, w = 2

Lennart Kauther, Aussois COW ’25 2/3



FAREZONEASSIGNMENT

Goal: Find partition into fare zones that maximizes operator’s revenue

u = 5 u = 2
u = 3

u = 1
u = 2

I ui – upper bound on zone changes
I Revenue for commodity i : number of zones passed · wi .
I Revenue (no cut): w1 + w2 + w3 + w4 + w5.

I Revenue (all cuts): 0 + 6 · w2 + 0 + 0 + 0.
I Revenue (OPT): 3 · w1 + 6 · w2 + 4 · w3 + 0 + 1 · w5.
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FAREZONEASSIGNMENT

Goal: Find partition into fare zones that maximizes operator’s revenue

u = 5 u = 2
u = 3

u = 1
u = 2

Results:

I NP-hard on paths.
I APX-hard on stars.
I Greedy arbitrarily bad.

Open Problems:

I Constant-factor
approximation?

I Greedy extension?
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1/3Support Vector Machines with ramp loss1

Data: xi 2 Rd, yi 2 {�1, 1} for i 2 [n]

Find w 2 Rd and b 2 R such that:

8i : yi = 1 wTxi � b � 1
8i : yi = �1 wTxi � b  �1

) 8i 2 [n] yi(wTxi � b) � 1

(Penalty) yi(wTxi � b) � 1 � ⇠i � Mizi

Penalize violation q:

8
<

:

0 if q  0
q if q 2 (0, 2]
2 if q > 2.

Minimize C

n
(total penalty) + 1

2 ||w||22.

1JP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479



1/3Support Vector Machines with ramp loss1

Data: xi 2 Rd, yi 2 {�1, 1} for i 2 [n]

Find w 2 Rd and b 2 R such that:

8i : yi = 1 wTxi � b � 1
8i : yi = �1 wTxi � b  �1

) 8i 2 [n] yi(wTxi � b) � 1

(Penalty) yi(wTxi � b) � 1 � ⇠i � Mizi

Penalize violation q:

8
<

:

0 if q  0
q if q 2 (0, 2]
2 if q > 2.

Minimize C

n
(total penalty) + 1

2 ||w||22.

�5 0 5 10

�5

0

5

10

1JP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479



1/3Support Vector Machines with ramp loss1

Data: xi 2 Rd, yi 2 {�1, 1} for i 2 [n]
Find w 2 Rd and b 2 R such that:

8i : yi = 1 wTxi � b � 1
8i : yi = �1 wTxi � b  �1

) 8i 2 [n] yi(wTxi � b) � 1

(Penalty) yi(wTxi � b) � 1 � ⇠i � Mizi

Penalize violation q:

8
<

:

0 if q  0
q if q 2 (0, 2]
2 if q > 2.

Minimize C

n
(total penalty) + 1

2 ||w||22.

�5 0 5 10

�5

0

5

10

wTx = b

1JP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479



1/3Support Vector Machines with ramp loss1

Data: xi 2 Rd, yi 2 {�1, 1} for i 2 [n]
Find w 2 Rd and b 2 R such that:

8i : yi = 1 wTxi � b � 1
8i : yi = �1 wTxi � b  �1

) 8i 2 [n] yi(wTxi � b) � 1
(Penalty) yi(wTxi � b) � 1 � ⇠i � Mizi

Penalize violation q:

8
<

:

0 if q  0
q if q 2 (0, 2]
2 if q > 2.

Minimize C

n
(total penalty) + 1

2 ||w||22.

q

Penalty(q)

2

2

1JP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479



1/3Support Vector Machines with ramp loss1

Data: xi 2 Rd, yi 2 {�1, 1} for i 2 [n]
Find w 2 Rd and b 2 R such that:

8i : yi = 1 wTxi � b � 1
8i : yi = �1 wTxi � b  �1

) 8i 2 [n] yi(wTxi � b) � 1
(Penalty) yi(wTxi � b) � 1 � ⇠i � Mizi

Penalize violation q:

8
<

:

0 if q  0
q if q 2 (0, 2]
2 if q > 2.

Minimize C

n
(total penalty) + 1

2 ||w||22.

q

Penalty(q)

2

2

1JP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479



1/3Support Vector Machines with ramp loss1

Data: xi 2 Rd, yi 2 {�1, 1} for i 2 [n]
Find w 2 Rd and b 2 R such that:

8i : yi = 1 wTxi � b � 1
8i : yi = �1 wTxi � b  �1

) 8i 2 [n] yi(wTxi � b) � 1
(Penalty) yi(wTxi � b) � 1 � ⇠i � Mizi

Penalize violation q:

8
<

:

0 if q  0
q if q 2 (0, 2]
2 if q > 2.

Minimize C

n
(total penalty) + 1

2 ||w||22.
�5 0 5 10

�5

0

5

10

wTx = b

1JP Brooks. “Support vector machines with the ramp loss and the hard margin loss.” Op. Res. 59.2 (2011): 467-479



2/3A Mixed Integer Quadratic Optimization model

minw,b,⇠,z
1
2 ||w||22 +

C

n

P
i2[n] (⇠i + 2zi)

s.t. yi(wTxi � b) � 1 � ⇠i � Mizi 8i 2 [n]
w 2 Rd, b 2 R, ⇠ 2 [0, 2]n, z 2 {0, 1}n.

Tight bounds [`, u] on (w, b) ) small Mi’s ) tighter formulation.

wz}|{ bz}|{ ⇠z }| { zz }| {

Coeff.
matrix:

0

B@
y1xT

1 �y1 1 M1
... . . . . . .

ynxT
n �yn 1 Mn

1

CA) Branch
on w, b

Select wj or b and ⌧ 2 (`j, uj)
Branching rule: wj  ⌧ _ wj � ⌧ (or b  ⌧ _ b � ⌧)
Heuristic based on LP solution to find good (wj, ⌧) or (b, ⌧)
Apply branching rule + all tighter big-M constraints
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3/3Computational tests2 on known instances3

n = 100, d = 2
2hr time limit
Xpress 9.2, C API
branching callbacks

Binary branch (z) Branch on w, b

Inst. t(BB) Nodes t(BB) Nodes
1 1470.3 13M 8.1 6491
2 88.7 834k 14.2 13991
3 613.8 6909k 24.0 25241
4 388.5 3255k 7.1 5743
5 16.8 68058 11.5 11228
6 120.8 1086k 21.3 21813
7 181.0 1660k 6.6 5315
8 107.3 683k 10.8 10040
9 131.2 1515k 18.2 17929
10 84.0 929k 6.1 4931
11 11.8 153k 8.6 7831
12 121.0 1083k 15.0 14221
13 53.5 422k 5.2 4505
14 18.1 151k 7.5 6191
15 40.6 324k 11.1 10947
16 22.3 115k 4.9 3949
17 6.1 66173 6.1 5231
18 18.7 214k 8.3 8230

2PB, “Spatial branching for a special class of convex MIQO problems”, Optimization Letters 18.8 (2024): 1757-1770
3PB, P Bonami, M Fischetti, A Lodi, M Monaci, A Nogales-Gómez, D Salvagnin. “On handling indicator constraints in

mixed integer programming.” Computational Optimization and Applications 65 (2016): 545-566.



Robust optimization approaches for  
the Multiple Suppliers Purchase 

Planning Problem under Uncertainty
Gentile C.1, Giancola F.1,2, Mattia S.1
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Giancola – cow25 – Robust optimization approaches 
for the MSPP problem under uncertainty

Introduction: Multiple Supplier Selection and Purchase Planning Problem

1 2 3 T… T-1

q1 q2 q3 qT-1 qT

d1 d2 d3 dT-1 dT

B1 B2 B3 BT-1 BT

I1 I2 I3 IT-1 IT

Single
supplier s

• Key challenge: Uncertainty in suppliers lead times
• Our approach: Robust optimization algorithms to find valuable solutions 

even in the worst-case scenario



Giancola – cow25 – Robust optimization approaches 
for the MSPP problem under uncertainty

Robust optimization approaches 

Key Contribution:  
❖ Comparative analysis of these models in terms of solution quality and computational 

feasibility.  
❖ Practical insights for supply chain decision makers on managing uncertainty in 

supplier lead times.

Comparison of three robust optimization models:

1. Adjustable Unrestricted Model (Two-stage) 
• Fully adjustable decisions (max flexibility).
• High computational complexity (NP hard).

2. Static Model (Single-stage) 
• Fixed decisions for all scenarios (worst case).  
• Computationally efficient but very conservative.

3. Partially Adjustable Model
• Hybrid approach that combines the static and the adjustable methods.
• The planning horizon is divided into two phases, each with a different level of 

adaptability. 
• Balanced approach (tradeoff between flexibility and complexity).



Thank you!

Giancola – cow25 – Robust optimization approaches 
for the MSPP problem under uncertainty



Extended Formulations for Control Languages Defined
by Finite-State Automata
Maximilian Merkert1, Christoph Buchheim2, 27th Aussois COW, January 6, 2025

1TU Braunschweig, 2TU Dortmund



Extended Formulations for the Set of Feasible Controls

optimal control problem

with combinatorial constraints

time-discretized problem
extended formulation

for discretized problem

solution

discretize

strengthen

solve

Advantages:

Convex-hull formulation in the space of controls is independent of the discretization.

Methods such as combinatorial integral approximation [Sager, Jung, Kirches, 2011] benefit from

strong continuous relaxations.

But: Very few such formulations known; started only recently with [Buchheim, 2024].

Maximilian Merkert Extended Formulations for Control Languages Defined by Finite-State Automata Page 2
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Finite-State Automata & Extended Formulations

Proposition (Fiorini, Pashkovich, 2015)

Let L denote a language over ⌃ = {0, 1} and

M = (Q, �,⌃, q0,F ) be any deterministic finite-state

automaton recognizing the language L. Then for each

n 2 N+, there exists an extended formulation of

conv{x 2 {0, 1}n | x 2 L}

with size at most 2|Q|n.

evenstart

odd

1 1

0

0

Example: Even Parity

Maximilian Merkert Extended Formulations for Control Languages Defined by Finite-State Automata Page 3



Finite-State Automata & Extended Formulations

Theorem (Buchheim, M., 2024)

Let L denote a language over ⌃ ✓ Rn and
M = (Q, �,⌃, q0,F ) be any finite-state control
automaton recognizing the language L. Then for every
T 2 Q+ there exists an extended formulation of

conv(u 2 BV([0,T ],⌃) | u 2 L)

with polynomially many controls and linear constraints.

0start

1

1[0,L] 0[0,`]

1

0

Example: Min-Up/Down

Maximilian Merkert Extended Formulations for Control Languages Defined by Finite-State Automata Page 3



Summary

Main result transfers large class of extended formulations to function space.

We provide tools for non-representability proofs.

Some surprises, e.g. any discretization regular 6= regular as a control language

Preprint on finite-state control automata and convex-hull descriptions in function space

! [Buchheim, M.: Extended Formulations for Control Languages Defined by Finite-State Automata, Preprint

(Optimization Online), 2024.]

Thank you for your attention!

Maximilian Merkert Extended Formulations for Control Languages Defined by Finite-State Automata Page 4

https://optimization-online.org/?p=26321
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Some surprises, e.g. any discretization regular 6= regular as a control language

Preprint on finite-state control automata and convex-hull descriptions in function space

! [Buchheim, M.: Extended Formulations for Control Languages Defined by Finite-State Automata, Preprint

(Optimization Online), 2024.]
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Motivation

Integer Program
max

x
cTx

s.t. Ax ≤ b,
x ∈ Zn

(IP)

How much can we change the objective c without changing the optimal solution(s) ̂x?
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Oracle-Based Radial Cone Algorithm
built upon IPO (Walther, 2016)

Input: Optimization oracle O(⋅), Vertex of Interest ̂x
Output: Incidence graph T of radial cone at ̂x

1 T ← Initial-Conical-Hull(O(⋅), ̂x)
2 F ← Set of active Facets

3 while F ≠ ∅ do
4 Select f ∈ F
5 x ← O(cf ) // Run the Oracle with cf
6 if cfx > δf then
7 (T, F) ← Cone-Update(T, x, F, f) // Update Cone
8 else
9 F ← F ∖ {f} // Set facet f inactive

10 end
11 return T
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Small Example

min
x

1Tx

s.t. − 0.5x +y +z ≤ 1.5
x −0.5y +z ≤ 1.5
x +y −0.5z ≤ 1.5−x −y −z ≤ −0.2

0 ≤ x, y, z ≤ 1
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2 Symmetry Handling in the Presence of Custom Constraints

Motivation
Symmetry handling is important
I many optimization problems contain

symmetries
I disabling symmetry handling makes, e.g.,

SCIP 8 by 16% slower on MIPLIB 2017

But
I some problems contain lazy constraints
I solvers cannot detect symmetries

automatically

Traveling Salesperson Problem
(for undirected weighted graph G = (V, E,w))

min
X
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3 Symmetry Handling in the Presence of Custom Constraints

Main Question

Question
Can we inform a solver about symmetries of lazy or custom constraints to
benefit from powerful build-in symmetry handling methods?



4 Symmetry Handling in the Presence of Custom Constraints

Symmetry Detection

I solvers detect symmetries by building
auxiliary graph

I for each inequality, define a graph
whose automorphisms correspond to
symmetries

I combine these graphs for all
inequalities

min x1 � x2 + 2x3 + 2x4
x3 + x4  1

�x1 + x2 + 3x3  4
�x1 + x2 + 3x4  4

x1 x2 x3 x4



5 Symmetry Handling in the Presence of Custom Constraints

Symmetry Detection for Lazy Constraints

I same idea works for lazy constraint
I define auxiliary graph for entire

family of lazy constraints

I We have implemented this idea in
SCIP 9:

I symmetry information can be added
via callback

I SCIP extends its internal symmetry
detection graph by user information

Example: TSP
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6 Symmetry Handling in the Presence of Custom Constraints

Usage of Callback
1 static
2 SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphTSP)
3 {
4 SCIP_CONSDATA* consdata;
5 int* idx;
6 int vidx, nnodes, v;
7

8 consdata = SCIPconsGetData(cons);
9 nnodes = consdata->nnodes;

10 SCIP_CALL( SCIPallocBufferArray(scip, &idx, nnodes + 1) );
11

12 for( v = 0; v < nnodes; ++v ){
13 SCIP_CALL( SCIPaddSymgraphOpnode(scip, graph, 0, &idx[v]) );
14 }
15 SCIP_CALL( SCIPaddSymgraphConsnode(scip, graph, cons, 0.0, 0.0, &idx[nnodes]) );
16

17 for( v = 0; v < consdata->nedges; ++v ){
18 vidx = SCIPgetSymgraphVarnodeidx(scip, graph, consdata->vars[v]);
19 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, idx[consdata->first[v]], vid, FALSE, 0.0) );
20 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, idx[consdata->second[v]], vid, FALSE, 0.0) );
21 }
22

23 for( v = 0; v < nnodes; ++v ){
24 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, idx[v], idx[nnodes], FALSE, 0.0) );
25 }
26 *success = TRUE;
27 SCIPfreeBufferArray(scip, &idx);
28

29 return SCIP_OKAY;
30 }

1



7 Symmetry Handling in the Presence of Custom Constraints

Summary

I symmetry detection in presence of lazy or custom
constraints is possible

I framework also allows to detect reflection symmetries
I check the preprint for more information on

I theory behind symmetry detection graphs
I rules for building these graphs
I specialized graph for MINLP

preprint

https://optimization-online.org/?p=26398
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MOTIVATION: Find e�cient separation algorithms for

rank-1 Chvátal-Gomory cuts derived from Knapsack sets

Given x̄ œ P := {x œ Rn

+ | aT x Æ b¸ ˚˙ ˝
0<u0<1

, xi Æ 1, i = 1, . . . , n¸ ˚˙ ˝
0Æui <1

} with b, ai œ Z+

Rank-1 Chvátal-Gomory cut: z(u) =
ÿ

iœI

Âu0ai +uiÊx̄i ≠Âu0b+
ÿ

iœI

uiÊ > 0 (1)

Lemma 1 (Selecting best multipliers ui given u0)

Given ū œ Rn+1

+ with z(ū) > 0, define J(ū) = {i œ I | Âū0ai + ūiÊ = Âū0aiÊ + 1}. Then,

we have that z(u) Ø z(ū) for any u œ Rn+1

+ such that u0 = ū0 and

ui =
;

1 ≠ (u0ai ≠ Âu0aiÊ) if i œ J(ū)
0 if i œ I \ J(ū). (2)

Theorem 2 (Discretising multipliers u0)

Given U0 :=
)

p

ai
| i = 1, . . . , n, p = 1, . . . , ai ≠ 1

*
, to get u œ Rn+1

+ maximizing z(u),
for each u0 œ U0 we look for J(u0) µ I such that

z(u0) =
ÿ

iœI

Âu0aiÊx̄i +
ÿ

jœJ(u0)

x̄j ≠ Âu0b +
ÿ

jœJ(u0)

(1 ≠ (u0aj ≠ Âu0ajÊ))Ê > 0.

To find J(u0) we need to solve a sequence of n Knapsack Problems.
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The exact separation of a rank-1 CG-cut has complexity O(bn
2
KP). If we use

dynamic programming for KP, we get O(b2
n

3).
For a fractional KP heuristic, the complexity is O(bn

2).

Results on the Generalized Assignment Problem (GAP), SCIP heuristic lifted-cover [Letchford2019],

GUROBI cover cuts, and our CG-cut. Gap closed:

!
1 ≠ LP0≠LPCG

Opt≠LPCG

"
· 100, runtime in seconds.

SCIP Gurobi Exact KP Fractional KP

instance gap cl. time gap cl. time gap cl. time gap cl. time

d05100 15.59% 0.2 11.13% 0 56.69% 0 55.52% 0

d05200 13.39% 0.3 13.59% 0 54.20% 1 54.03% 0

d10100 22.59% 0.4 5.93% 0 63.69% 1 63.41% 0

d10200 15.90% 0.5 11.72% 0 51.30% 1 50.46% 0

d20100 26.39% 0.9 2.72% 0 66.79% 2 66.60% 1

d20200 30.93% 1.5 2.00% 0 70.56% 3 69.86% 1

d20400 29.12% 2.6 5.89% 1 70.27% 4 69.90% 2

d201600 26.77% 10.8 39.39% 2 74.61% 8 73.58% 5

Preprint: Giacomo Maggiorano, Stefano Gualandi, Pasquale Avella, and Michele Mele.

Rank-1 Chvátal-Gomory cuts from Knapsack sets: A computational study, 2024.
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Motivation

• «train dispatching» in Google Scholar returns 17600 results from 2020…

• …and probably each one of them uses a different set of instances!   WHY?? (crying of frustration)

• Many countries still consider the sharing of railways data as a violation of national security
‒ But they publish a public timetable (not in machine-readable format)
‒ And (in Europe) they are required to publish a network statement

• Lack of a standard format

• Existing formats (e.g., RailML) are way too detailed and complex for non-experts

• Other research communities have gained a lot from standardized, comprehensive benchmark libraries
‒ Vehicle Routing (TSP, CVRP, …) 
‒ SATLIB, MIPLIB, MaxSAT Evalutations, …

Traffic Management System (TMS)

Control system

Real-time 
schedule

Dispatchers' 
user interface

Timetable

Dispatching
algorithm



The DISPLIB 2025 Competition: spirit and rules

• The competition challenges the research community to find innovative and effective algorithms for 
solving a diverse set of real-life train dispatching instances

• The instances come from different countries and have different characteristics: some have many 
routing options and few trains while others have few routing options and many trains.
‒ (thanks to SINTEF Digital, Siemens Mobility, data.sbb.ch for confirmed sets of instances so far…)
‒ (three new data sources under way, pending data release, more are welcome!)

• General rules:
‒ The usage of commercial MIP solver is allowed
‒ The usage of ML pre-training is allowed, and the learning phase does not count against the time limit
‒ The time limit to solve each instance is 10 minutes, maximum 8 CPUs and 32GB of RAM. Teams using GPUs 

are limited to 1 GPU unit and 24 GB of GPU memory.
‒ The source code does not need to be submitted, but the winners may be required to show additional proof 

of compliance to the rules above



The DISPLIB 2025 Competition:
a train dispatching challenge

• DISPLIB: a new train dispatching benchmark library
‒ Wide range of real-life instances from all over the world
‒ Simple but powerful problem definition

• The DISPLIB 2025 Competition
‒ Schedule and route trains from a wide range of real-world use cases
‒ No deep knowledge of railways needed to start
‒ Winners will be invited to a special session at ODS 2025
‒ … and get an expedited review process in the Journal of Rail Transport 

Planning & Management (JRTPM)
‒ FINAL SUBMISSION: End of April 2025

Get started now!!
displib.github.io

https://displib.github.io/
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Cyclic Transversal Polytopes

Cyclic Transversal Polytopes

• Matching polytopes

• Stable set polytopes

• Cut polytopes

• ...

Lifted Odd Set Inequalities

• Edmond’s blossom inequalities

• Odd hole inequalities

• Cycle inequalities

• ...

2 Jannik Trappe // CTP



Discrete 
Optimization

Generalized assignment 
and knapsack problems 
in the random order model

Max Klimm 

joint work with Martin Knaack

Malevich: Painterly Realism of a Boy with a Knapsack (1917) Aussois Combinatorial Optimization Workshop 2025
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 M. Klimm: GAP and Knapsack in the random order modelGeneral assignment problem

 bins 
• capacity 

m
Ci

 items 
• value  when packed in bin  
• size  when packed in bin 

n
vi,j i

si,j i

items arrive in random order 
• packing decision immediate and irrevocable

algorithm knows only  
• goal is to maximize expected value 

of items packed 

• competitive ratio: 

n

expected value of algorithm

optimal value

2

C1

1 2 3
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first compute infeasible solution 
where 1 item per bin may overlap

discard first  itemsn/2

for further items 
• solve LP relaxation with all items seen so far 
• assign item to bins with probability 

from the LP solution

to obtain feasible solution choose with probability 1/2: 
• solution without overlapping items 
• overlapping items

4

1 2 3
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Fractional Chromatic Numbers from Exact Decision Diagrams

Timo Brand (TU Munich) and Stephan Held (U Bonn)

Aussois, January 6, 2025



Stephan Held

Fractional Chromatic Number

Chromatic number via stable set cover

min

X

S2S
xS

s.t.
X

S2S:v2S

xS � 1 8v 2 V

xS 2 {0, 1} 8S 2 S

LP relaxation: fractional chromatic number

min

X

S2S
xS

s.t.
X

S2S:v2S

xS � 1 8v 2 V

xS 2 [0, 1] 8S 2 S

�

B-&-P: [Mehrotra & Trick ’96, Gualandi & Malucelli ’10, Malaguti, Monaci & Toth ’10, Cook, H. & Sewell ’12]

S := set of stable sets



Stephan Held

Graph Coloring with Decision Diagrams (van Hoeve ’22)

1 2

3 4

{1,2,3,4}

{4} {2,3,4}

{4}
- {3,4}

-
{4}

-

x1

x2

x3

x4

|V |+ 1 layers

(one level of arcs per vertex)

solid arc b= vertex i 2 S
dashed arc b= vertex i 62 S
stable sets b= maximal paths

Exact decision diagrams represent stable sets exactly.

Relaxed decision diagrams may contain unstable sets (van Hoeve’s focus).



Stephan Held

Flow ILP on Decision Diagrams (van Hoeve ’22)

Flow ILP for graph coloring:

min

X

a2�+(r)

ya

s.t.

X

a=(u,v):L(u)=j,`(a)=1

ya � 1 8j 2 V

X

a2��(u)

ya �
X

a2�+(u)

ya = 0 8u 2 N \ {r , t}

ya 2 {0, . . . , n} 8a 2 A

Covering of solid arc sets in each level

with an integral r -t-flow.

Van Hoeve reported lower bounds similar to set cover LP for relaxed decision diagrams.

Q: Which one is better?



Stephan Held

Fractional Chromatic Numbers from Exact Decision Diagrams

Theorem (Brand & H.’ 24)

In an exact decision diagram, the linear relaxation of the flow ILP determines the

fractional chromatic number �f .

Consequences

I alternative method to compute �f .

I relaxed decision diagrams provide lower bounds for �f and �.
(set cover LP requires pricing to optimality)

I Using exact decision diagrams, we could solve a previously open DIMACS instance:

�(r1000.1c) = 98.

(Solving ILP with exact-SCIP [Eifler, Gleixner ’22] in 3h).

Paper: arXiv:2411.03003, code & data archive: https://doi.org/10.60507/FK2/ZE9C3L

https://arxiv.org/abs/2411.03003
https://doi.org/10.60507/FK2/ZE9C3L


The Power of Proportional Fairness

for Non-Clairvoyant Polytope Scheduling

Sven Jäger
1

Alexander Lindermayr
2 Nicole Megow2

1University of Kaiserslautern-Landau (RPTU), Germany
2University of Bremen, Germany

Combinatorial Optimization Workshop, Aussois 01/2025



(Online) Unrelated Machine Scheduling

R | rj , pmtn |
P

wjCj
I n jobs, m unrelated machines

I processing requirements pj
I speeds sij � 0

I find schedule xij(t) 2 {0, 1}
I preemption and migration

I minimize
P

j wjCj

Q | rj , pmtn |
P

wjCj
I uniform speeds si = sij 8j on each

machine i

1

2

3

time

2

1

1

2

2

5

0 1 2 3 4 5 6 7 8 9 10

Cbluerblue Cgreenrgreen

pblue = 2 · 2 + 2 · 1 + 3 · 1 + 2 · 2 = 13

Online job arrival (onl-rj)
job j unknown before rj

Non-clairvoyance (nclv)

pj unknown
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(Online) Polytope Scheduling Problem (PSP)

Polytope Scheduling [Im, Kulkarni, and Munagala JACM’18]
I n jobs

I release dates rj , weights wj
I processing requirements pj
I “rate” polytope P = {y 2 Rn

�0 | By  1} for some B 2 QD⇥n

I at any time t, choose rates y(t) 2 P
I Cj := argmint

� R t
t0=0 yj(t0) dt0

�
� pj

I minimize
P

j wjCj

Unrelated Machine Scheduling is a PSP with the polytope (before projection)

⇢
(y, x) 2 Qn⇥(m⇥n)

�0

���� yj =
mX

i=1

sijxij 8j,
nX

j=1

xij  18i,
mX

i=1

xij  18j
�

.
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Non-Clairvoyant Scheduling

We say an online algorithm is ⇢-competitive if ALG(I )  ⇢ · OPT(I ) for all I .

Theorem (Motwani, Phillips, Torng ’94)

There is no better-than-2-competitive non-clairvoyant algorithm for minimizing the total com-

pletion time on a single machine.

Adversarial strategy: ensure that no job finishes until time 1; then complete all.

1

0 1

ALG(I ) � n

n

1

n

1

OPT(I )  1
2n + 1

2

Ratio approaches 2 if all jobs receive the same rate �! Round-Robin [MPT94]

From the jobs perspective, we seek fair rates.
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Proportional Fairness

Fair allocation and market equilibria: Fisher markets [Eisenberg and Gale ’59], one-sided matching

markets [Jain and Vazirani ’10] [Garg, Tröbst, Vazirani ’22]

Proportional Fairness (PF): [Nash 1950, Eisenberg & Gale 1959, Kaneko & Nakamura 1979]

PF(J ) argmax
y2P

✓Y

j2J
ywj

j

◆1/
P

wj

= argmax
y2P

X

j2J
wj log yj .

At any time t, schedule PF(J (t)) on set of available jobs J (t). [Im, Kulkarni, Munagala 2018]

Round-Robin is the special case of PF for 1 | pmtn |
P

Cj

Important subclass of PSP: PF-monotone PSP (short MonPSP)

y = PF(J ) and y0 = PF(J 0) with J 0 ✓ J =) yj  y0
j 8j 2 J 0 .
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Our Results

We improve the analysis of PF for PSP via PF-monotonicity and ↵-superadditivity:

Theorem 1
PF is 4-competitive for MonPSP.

Q | rj , pmtn |
P

wjCj and R | rj , pmtn, sij 2 {0, 1} |
P

wjCj are MonPSP.

Theorem 2
PF has a competitive ratio of at most

I 2↵+ 1 for ↵-superadditive PSP with non-uniform release dates, and

I 2↵ for ↵-superadditive PSP with uniform release dates.

I R | pmtn |
P

wjCj is 1.81-superadditive.

I Q | pmtn |
P

Cj is 1-superadditive.

I R | pmtn, sij 2 {0, 1} |
P

Cj is 1-superadditive.

I P | pmtn |
P

wjCj is 1-superadditive.

5/6



Our Results

We improve the analysis of PF for PSP via PF-monotonicity and ↵-superadditivity:

old bounds (poly-time) our bounds
Problem onl-rj & nclv onl-rj onl-rj & nclv

PSP 128 [IKM18] 128 27
MonPSP 25.74 [IKM18] 25.74 4

R | rj , pmtn |
P

wjCj 32 [IKMP14] 5.78 [CPS+96] 4.62
R | pmtn |

P
wjCj 32 [IKMP14] - 3.62

R | rj , pmtn, sij 2 {0, 1} |
P

wjCj 25.74 5.78 4
R | pmtn, sij 2 {0, 1} |

P
Cj 25.74 - 2

R | rj , pmtn, sij = si |
P

wjCj 25.74 5.78 4
R | pmtn, sij = si |

P
Cj 25.74 - 2

6/6



Integrating routing congestion into analytic
placement

Martin Drees

Research Institute for Discrete Mathematics, Bonn

1



Placement and routing

• Place cells overlap-free
• Minimize netlength
• Global: Avoid high density

• Connect pins with disjoint
Steiner trees

• Global: Avoid high
congestion

2



Flat analytic placement

• Minimize wirelength + λ · density_penalty
• Use variant of gradient descent

3



Considering routing congestion

• Extend objective function:
wirelength + λ1 · density_penalty + λ2 · congestion_penalty

• Given: Grid graph with congestion costs on edges
• Goal: Efficiently compute congestion costs for nets

• Simplifications:
! Two-terminal nets (introduce Steiner vertices for larger nets)
! Pins are on vertices of grid graph (interpolate)
! Only L-shaped paths (subdivide)
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Evaluating congestion costs efficiently

• Same congestion costs for many paths =⇒ preprocessing
• For every row and column, compute consecutive sums
• L-shaped paths can be efficiently computed using these

0 6 13 22
6 7 9

22− 6 = 16

5



Sparse Sub-gaussian Random Projections for Semidefinite
Programming Relaxations

Lars Schewe (joint work with Monse Guedes-Ayala, Pierre-Louis Poirion, Akiko
Takeda)

Aussois 2025



Our problem

SDP-relaxations
… Powerful,
… but o�en very large problems



The approach

Random projections
… In general: Projections to small spaces approximately preserve distances.
… Can be exploited for various optimization algorithms

Our case
… Projecting the matrix variable of an arbitrary SDP
min hC ,X i
s.t. hAi ,X i = bi i 2 {1, ...,m},

X ⌫ 0

min hPCP >,Y i
s.t. hPAi P

>,Y i = bi i 2 {1, ...,m},
Y ⌫ 0



Results

… Bounds on the projection error
… Able to reconstruct feasible solutions
… Works reasonably well for problems with few constraints



Paper

Sparse Sub-gaussian Random Projections for Semidefinite Programming Relaxations
Monse Guedes-Ayala, Pierre-Louis Poirion, Lars Schewe, Akiko Takeda

https://arxiv.org/abs/2406.14249

https://arxiv.org/abs/2406.14249


Bonus: Solving real-world optimization problems in electricty
transmission networks

Cannot present my projects (yet)
… . . .but I am happy to talk about it.

Ask me about electricity networks!
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Something (surprising?) about the assignment problem
Marco Di Summa

! Assignment problem: Given a matrix A ∈ Rn×n, select n elements —one per row
and per column— that maximize the sum of the entries of A.

! Let d = rank(A). Then A = CP with C ∈ Rn×d and P ∈ Rd×n.

! Each row ci of C → linear function cix

! Let Ki = {x ∈ Rd : cix ≥ chx ∀ h}. Ki is a cone in Rd (and these cones form the
normal fan of a polytope).

! Each column pj of P → point pj ∈ Rd

! Any feasible solution to the assignment problem can be seen as assigning each
cone Ki to a different point pj (i.e., translate Ki so that pj is its apex)

! If (but not “only if”) the solution to the assignment problem is also optimal, the
interiors of the translated cones are pairwise disjoint.



Something (surprising?) about the assignment problem
Marco Di Summa

This can be done also when the cones do not form the normal fan of a polytope:



Something (surprising?) about the assignment problem
Marco Di Summa

This can be done also when the cones do not form the normal fan of a polytope:

Theorem (perhaps useless, but did you know —and can you believe— this?)

Given n points in Rd and n cones with pairwise disjoint interiors, it is always possible
to “assign” cones to points so that the interiors of the translated cones are pairwise
disjoint (and this can be done by solving an assignment problem).



Something (surprising?) about the assignment problem
Marco Di Summa

This can be done also when the cones do not form the normal fan of a polytope:

Theorem (perhaps useless, but did you know —and can you believe— this?)

Given n points in Rd and n cones with pairwise disjoint interiors, it is always possible
to “assign” cones to points so that the interiors of the translated cones are pairwise
disjoint (and this can be done by solving an assignment problem).



Something (surprising?) about the assignment problem
Marco Di Summa

This can be done also when the cones do not form the normal fan of a polytope:

Theorem (perhaps useless, but did you know —and can you believe— this?)

Given n points in Rd and n cones with pairwise disjoint interiors, it is always possible
to “assign” cones to points so that the interiors of the translated cones are pairwise
disjoint (and this can be done by solving an assignment problem).



Identifying when thresholds 
from the Paris Agreement are 

breached: the minmax average, 
a novel smoothing approach

Why we might have breached the 1.5°C limit already in July 2023

Aussois, January 2025



When will we reach 1.5°C ?



Claim : a sound methodology should give given
the natural answers when data is monotone

Purely data based methodologies:
moving average, LOESS, …



First attempt : Isotonic Regression
Our question has a clear answer only when the time series is
montonously increasing. So why not 
computing the closest time series with that property ?



Properties of the
isotonic regression

• Interval decomposition
• Constant within
• Strictly increasing across

• Within an interval
• The interval value is the average

of the data within the interval
• Within the interval, the data is decreasing in the following sense

• The endpoint n of the interval [m,n] is the minimizer of 



MinMax Average
• Intuition (necessary conditions) : Reaching the threshold L « for good » in period i means

•
•
•
• …                         up to period i+K-1



MinMax Average



The recent period : 1970 - 2023

• Each constant interval 
spans 1 or 2 ups and down 
(nearly by construction)

• Big El Ninõ in ‘97-’98 and in 
‘15-’16.

• « Hiatus » of 2001-2013
• « Hiatus » of 2016-2023



The recent period : 1970 - 2023

• Each constant interval 
spans 1 or 2 ups and down 
(nearly by construction)

• Big El Ninõ in ‘97-’98 and in 
‘15-’16.

• « Hiatus » of 2001-2013
• « Hiatus » of 2016-2023
• +0.25°C/decade since 1994



El Ninõ projections : very hard



Maximum difference between k-months 
moving and minmax averages

1.88             1.50

1.79             1.47

1.75             1.50

1.69             1.50

’23-’24 Implied lower bound

Average July 2023 – September 2024 : 1.68°C

For the July 2023 minmax average to be below 
1.5°C, all these records would need to be broken



Conclusion

• Many ways to smooth out up-and-downs, but some make more sense 
(less assumptions, closer to meaning of “threshold” in English, closer 
to data)

• We’ll know for sure if we have passed 1.5°C in 2023 only after the end 
of the next La Ninã, so probably in 2026 or 2027.

• We might pass the threshold in some datasets and not others, but most 
datasets differ by just a constant

• At the current rate of temp increase (+0.25°C/decade), we’ll breach 
the hard +2°C threshold of the Paris agreement in 2043 already



Diego Moran Ramirez
Rensselaer Polytechnic Institute



This talk: "finiteness" of cutting planes closures and 
convex hulls for the associated infinite family of 
polyhedra.



EXAMPLE CLOSURE

There exists a finite set of aggregations that define the Gomory 
Mixed-Integer closure (GMIC) for any polyhedron in the infinite 
family.



EXAMPLE HULL

The integer hull of any polyhedron in the infinite family is 
defined by “finitely” many additional inequalities.



CORE RESULT: STRUCTURE OF POLYHEDRA IN THE FAMILY

Implications: we generalize Becu et al.’s and Wolsey’s 
results for any reasonable closure and convex hull.



“FINITENESS” OF T-BRANCH CLOSURES (EX: T=1,SPLITS)

There is a finite list of split sets such that the split closure 
of any P(b) is defined by these splits translated by zb.

Conclusion: finite up to translation.



FINITENESS OF K-LATTICE CLOSURES (L IS A MIXED-INTEGER LATTICE)

There is a finite list of lattices such that the lattice closure 
of any P(b) is defined by these lattices.

Conclusion: truly finitely defined.



THE INTEGER HULL IS “FINITELY” DEFINED

The integer hull of any polyhedron in the infinite family is 
defined by “finitely” many additional inequalities 

Conclusion: finite up to r.h.s. translation.



Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
      Borda Pessimistic    
      Borda Average
3 OPT MODELS:  Discrete k-Median Where Each Centroid is Embedding of a Cast Ballot
      Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot
      Continuous k-Median



Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head – embed in “n choose 2” dimensions, where each dimension 
   corresponds to a pair of candidates i < j and it is
   +1 if i is preferred to j; -1 if j is preferred to i; 0 if neither i nor j listed
    Borda Pessimistic – embed in n dimensions, where each dimension 
   corresponds to a candidate i and if it is 
   n-j means that it is the jth preferred candidate; 0 if not on ballot
    Borda Average – embed in n dimensions, where each dimension 
   corresponds to a candidate i and if it is 
   n-j means that it is the jth preferred candidate; z if not on ballot 
   where z is set so that each embedded point sums to (n-1)+(n-2)+…+1
EXAMPLE:  n=4 (candidates {1,2,3,4}) Ballot: 3>1  H2H=(1, -1,  1, -1, 0, 1)
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Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head – embed in “n choose 2” dimensions, where each dimension 
   corresponds to a pair of candidates i < j and it is
   +1 if i is preferred to j; -1 if j is preferred to i; 0 if neither i nor j listed
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    Borda Average – embed in n dimensions, where each dimension 
   corresponds to a candidate i and if it is 
   n-j means that it is the jth preferred candidate; z if not on ballot 
   where z is set so that each embedded point sums to (n-1)+(n-2)+…+1
EXAMPLE:  n=4 (candidates {1,2,3,4}) Ballot: 3>1, BP = (2, 0, 3, 0)



Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head – embed in “n choose 2” dimensions, where each dimension 
   corresponds to a pair of candidates i < j and it is
   +1 if i is preferred to j; -1 if j is preferred to i; 0 if neither i nor j listed
    Borda Pessimistic – embed in n dimensions, where each dimension 
   corresponds to a candidate i and if it is 
   n-j means that it is the jth preferred candidate; 0 if not on ballot
    Borda Average – embed in n dimensions, where each dimension 
   corresponds to a candidate i and if it is 
   n-j means that it is the jth preferred candidate; z if not on ballot 
   where z is set so that each embedded point sums to (n-1)+(n-2)+…+1
EXAMPLE:  n=4 (candidates {1,2,3,4}) Ballot: 3>1; BA = (2, .5, 3, .5)



Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
      Borda Pessimistic    
      Borda Average
3 OPT MODELS:  Discrete k-Median Where Each Centroid is Embedding of a Cast Ballot
  

C = D = embeddings of cast ballots       d(i,j) = L1 distance between embeddings of i & j           w(i) = # of ballots cast for i 



Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
      Borda Pessimistic    
      Borda Average
3 OPT MODELS:  Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot
  

C = embeddings of cast ballots D = embeddings of legal ballots d(i,j) = L1 distance between embeddings of i & j  w(i) = # ballots for i 

PROBLEM!!
when n=15
there are too 
many legal 
ballots!
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FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
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      Borda Average
3 OPT MODELS:  Continuous k-Median w.r.t. L1 metric
  



Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
      Borda Pessimistic    
      Borda Average
3 OPT MODELS:  Continuous k-Median w.r.t. L1 metric
                  THIS IS A DISCRETE OPTIMIZATION PROBLEM!
      IF A SET OF POINTS IS ASSIGNED TO SAME CLUSTER 
      (BY ASSIGNMENT VARIABLES)
      OPTIMAL CENTROID IS:
   FOR EACH DIMENSION 
    MEDIAN VALUE IN THAT DIMENSION 
    (I.E., A COUNTING PROBLEM)
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      “CONTINUOUS CENTROID” BUT CONSTRAINED TO BE LEGAL BALLOT
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  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
      Borda Pessimistic    
      Borda Average
3 OPT MODELS:  Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot
      CAN HANDLE LIKE CONTINUOUS k-MEDIAN!
      “CONTINUOUS CENTROID” BUT CONSTRAINED TO BE LEGAL BALLOT
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Analyzing Election Data for Polarization:
A Question About Formulations

Moon Duchin, David Shmoys, Kris Tapp 
FRAMEWORK: Given full set of cast ballots in an election using rank choice voting
  Note: a ballot with n candidates is a sorted list of a subset of candidates 
  Embed each ballot in a given metric space
  Consider resulting clusters with respect to given optimization model
3 EMBEDDINGS: Head-to-Head
      Borda Pessimistic    
      Borda Average
3 OPT MODELS:  Discrete k-Median Where Each Centroid is Embedding of any Legal Ballot
      CAN HANDLE LIKE CONTINUOUS k-MEDIAN!
      “CONTINUOUS CENTROID” BUT CONSTRAINED TO BE LEGAL BALLOT

QUESTION: PREVIOUS USE OF THIS APPROACH?
ANALYSIS OF >1000 SCOTTISH ELECTIONS IN PROGRESS!
  



On fractional tree-independence-number-fragility

Andrea Munaro (University of Parma)
January 6th, 2025

Contains joint works with:

• E. Galby (Chalmers University of Technology) and S. Yang (Queen’s University Belfast)

• C. Dallard (University of Fribourg), M. Milanič (University of Primorska) and S. Yang (Queen’s University Belfast)



Claim: Fractional -↵-fragility allows to unify and extend a large
number of PTASes on both sparse and dense graph classes



Planar graphs and unit disk graphs

The following problems admit a PTAS:

1. Find max independent set in planar graph (Baker 1983)

 Layering technique

2. Find max number of pairwise non-intersecting disks in a collection of unit disks inR2

(Hochbaum, Maass 1985)
 Shi�ing technique

Common theme: solve small subproblems via dynamic programming

Intersection graph jump from
geometric to graph-theoretic world
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Motivating questions

Is there any underlying graph-theoretic reason for the existence of PTASes
for I���������� S�� on these seemingly unrelated graph classes?

Is there a general notion under which PTASes using Baker’s technique can
be obtained? (Grigoriev, Bodlaender 2007)



Baker’s technique

Theorem (Vertex Decomposition Theorem, Baker 1983)
Given a planar graph G and k 2 N, V(G) can be partitioned into k (possibly empty) sets
X1, . . . , Xk in such a way that, for every i 2 {1, . . . , k}, (G- Xi) = O(k).

Moreover, such a partition together with tree decompositions of width O(k) of the
respective subgraphs can be computed in polynomial time.
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Theorem (Vertex Decomposition Theorem, Baker 1983)
Given a planar graph G and k 2 N, V(G) can be partitioned into k (possibly empty) sets
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Beyond planar graphs: Proper minor-closed classes

VDTs exist for:

• graphs of bounded genus (Eppstein 2000)

• apex-minor-free graphs (Eppstein 2000)

• H-minor-free graphs (DeVos et al 2004; Demaine, Hajiaghayi, Kawarabayashi 2005)

 Bidimensionality theory: link between PTASes and subexponential FPT algorithms
(Demaine, Hajiaghayi, 2005)

!!! VDTs for intersection graphs of geometric objects are something too strong to ask for



Beyond proper minor-closed classes: E�icient fractional -fragility

First relaxation of a VDT: Approximate partition of vertex set.

Definition (Dvořák 2016)
A graph class G is e�iciently fractionally -fragile if 9 f : N ! N and an algorithm
that, 8 r 2 N and G 2 G, returns in time poly(|V(G)|) a collection of subsets
X1, X2, . . . , Xm ✓ V(G) such that each vertex of G belongs to at mostm/r of the subsets
andmoreover, for every i 2 {1, . . . ,m}, the algorithm also returns a tree decomposition
of G- Xi of width at most f(r).

PTAS frameworks of maximization problems on e�iciently fractionally -fragile classes
(Dvořák, Lahiri 2021; Dvořák 2022)

!!! Unit disk graphs are not fractionally -fragile (no sublinear separators)
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Second relaxation of a VDT: Replace with the more powerful -↵.

Theorem
The class of intersection graphs of c-fat collections of objects inRd, for fixed d, is e�iciently
fractionally -↵-fragile.

A collection of objects is c-fat if it satisfies a sort of “low-density property”.

Slight generalization of (Chan 2003), implicitly used by (Har-Peled, Quanrud 2017).
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PTAS frameworks

Let be a fixed CMSO2 formula expressing an h-near-monotone property.

(c, h, )-M��W����� I������ S�������

Input: A graph G equipped with a weight functionw : V(G) ! Q+.
Task: Find a set F ✓ V(G) such that:

1. G[F] |=  ,

2. !(G[F]) 6 c,

3. F is of maximumweight subject to the conditions above,

or conclude that no such set exists.

• M��W����� I���������� S��

• M��W����� I������M�������

• M��W����� I������ F�����

• M��W����� I������ P����� S�������

• ...



Given a finite familyH of connected non-null subgraphs of G, a distance-dH-packing in
G is a subfamily of subgraphs fromHwhich are at pairwise distance at least d.

M��W����� D�������-d P������
Input: GraphG, finite familyH = {Hj}j2J of connectednon-null subgraphsofGwith
|V(Hj)| 6 h for each j 2 J, weight functionw : J! Q+.
Task: Find a distance-dH-packing in G of maximumweight.



Theorem
The following problems admit a PTAS on every e�iciently fractionally -↵-fragile class:

1. (c, h, )-M��W����� I������ S�������;

2. M��W����� D�������-2 P������.

Theorem
M��W����� D�������-p P������, for even p 2 N, admits a PTAS on:

3. every class of intersection graphs of c-fat collections of objects inRd, for fixed d;

4. every class of bounded layered tree-independence number (provided that tree
decomposition and layering are computable in poly-time).

Allow to generalize and extend several PTASes for:

• intersection graphs of fat objects (Chan 2003; Erlebach, Jansen, Seidel 2005)

• e�iciently fractionally -fragile classes (Dvořák 2022; Dvořák, Lahiri 2021)

• intersection graphs of low-density objects (Har-Peled, Quanrud 2017)

Complement PTASes for unweightedminimization problems on intersection graphs of fat
objects (Dvořák, Lokshtanov, Panolan, Saurabh, Xue, Zehavi 2023)
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Definition
The layered independence number of a tree decomposition T = (T, {Xt}t2V(T)) of a
graph G is the minimum integer ` such that, for some layering (V0, V1, . . .) of G, and for
each bag Xt and layer Vi, we have ↵(G[Xt \ Vi]) 6 `.

The layered tree-independence number of a graph G is the minimum layered
independence number of a tree decomposition of G.
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Bounded layered tree-independence number

Layered -↵ generalizes layered (Dujmović, Morin, Wood 2017)

Classes with bounded layered -↵:

• Graphs embeddable on a surface of b. genus with b. number of crossings per edge;
 b. layered (Dujmović, Eppstein, Wood 2017)

• (g, k)-string graphs b. layered (Dujmović, Joret, Morin, Norin, Wood 2018)

• Intersection graphs of k-similarly-sized c-fat families of objects inR2

• Unit width rectangle graphs

• g-map graphs

• Hyperbolic uniform disk graphs

• Spherical uniform disk graphs



Subexponential-time exact algorithms: Square-root phenomenon

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2020)

There exist ETH-tight 2O(
p
n)-time algorithms for the unweighted version of many problems

on intersection graphs of similarly-sized fat objects inRd.

Key property: 9 balanced separators that can be covered with O(
p
n) cliques.

However, very little is known about the weighted case.

Key observation: Graph classes with bounded layered -↵ have O(
p
n) -↵.

Theorem
Let `, d 2 N be fixed constants, with d even. Let G be a n-vertex graph for which we can
compute, in time poly(n), a tree decomposition and a layering witnessing layered
tree-independence number at most `. ThenM��W����� D�������-d P������ can be
solved in 2O(

p
n log n) time.



Thank you!



MIP Workshop - Now in Europe !

Save The Date

July2-3 ,

Clermont-FerrandS
invited speakers + poster session

cheap registration + student housing
theory/computation/application

Mixed integer. org/ELROMTP/2025



A -Approximation Algorithm for Metric k-Median2 + ϵ
Ola Svensson 

Joint work with Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, Chris Schwiegelshohn





k-Median

• Given a set of n points  and a distance metric    


• Find a set of k centers  


• So that the distance of each point to its nearest center is minimized:

X dist

C ⊆ X
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A classical question in combinatorial optimization



A classical question in combinatorial optimization

JMS02,JMM+03: A 2-approximation algorithm that opens k centers in expectation!





+



Closing the gap



Closing the gap

NP-hard to do better than 1+2/e


Integrality gap of standard LP is at least 2



We are looking for postdocs
Soft deadline January 20

Brilliant and vibrant theory group that covers complexity, quantum, algorithms, 
game theory, theory of ML ... and includes faculty  E. Abbe, A. Chiesa, Andres 
Christi, F. Eisenbrand,  M. Göös,  M. Kapralov, O. Svensson, and last but not 
least T. Vidick.



Set Covering and the Replication Conjecture

Gerard Cornuejols∗1

1Carnegie Mellon University – United States

Abstract

Analogous to perfection in antiblocking theory is the notion of ”packing property” in
blocking theory. A key insight on perfect graphs is the famous replication lemma proved
by Laci Lovasz in 1972. In 1993, Michele Conforti and I proposed an analogous replication
conjecture when the packing property holds. This conjecture is still open. This talk covers
some recent developments related to the replication conjecture.

∗Speaker

sciencesconf.org:cow25:601774



Benchmarking challenges for quantum optimization:
the intractable decathlon

Many authors; presented by Giacomo Nannicini

University of Southern California

January 6–10, 2025

Many authors (many institutions) The intractable decathlon January 6–10, 2025 1 / 5



Using quantum computers for optimization

State of quantum optimization research

Continuous optimization:

Very active.

Rigorous complexity analysis.

Requires fault tolerance.

Discrete optimization:

Few rigorous complexity analyses.

Plenty of heuristics.

Many algorithms are designed for noisy devices and have been numerically

tested already.

What discrete optimization problems should we use to benchmark the
performance of quantum optimization algorithms?

Many authors (many institutions) The intractable decathlon January 6–10, 2025 2 / 5





The intractable decathlon

No. Name Description

1 Marketshare Multi-dimensional subset-sum

2 LABS Low autocorrelation binary sequences

3 Birkho↵ Birkho↵ decomposition

4 Steiner Steiner tree packing in graphs (VLSI Design/Wire Routing)

5 Sports Sports Tournament Scheduling (STS)

6 Portfolio Multi-period Portfolio optimization with transaction costs

7 Stable-Set Unweighted Maximum Independent Set (MIS)

8 Network Communications Network design problem

9 Routing Capacitated vehicle routing problem (CVRP)

10 Topology Graph topology design (Node-Degree-Diameter problem)

These problems have varying characteristics. All of them are extremely di�cult for

exact classical algorithms already at system sizes ⇡ 102 to 105.

Many authors (many institutions) The intractable decathlon January 6–10, 2025 4 / 5



“Quantum optimization benchmarking challenges” repo

We provide a repository with instances, guidelines, pointers to state-of-the-art

algorithms, baseline results, updated results (e.g., best solutions, gap), ensuring:

Comparability of used methods;

Reproducibility of the respective solutions;

Trackability of algorithmic and hardware improvements.

The benchmark is model-independent: we do not prescribe the model used to

solve the problem.

Repository: https://git.zib.de/bzfkocht/qbench/. Out soon!

These problems cannot be solved with current technology.
We need your help to push the boundary of what optimization

algorithms can do!

Many authors (many institutions) The intractable decathlon January 6–10, 2025 5 / 5

https://git.zib.de/bzfkocht/qbench/
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Hypergraph 2 cut sparsification
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Submodular quotients
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Column Generation (CG)

Method to solve Linear Programs (LPs) with a very large number of variables

Applied to important classes of Integer Programs (IPs), leading to
Branch-and-Price (BP) and Branch-Cut-and-Price (BCP) algorithms:

• Vehicle routing
• Cutting and packing
• Airline planning
• Timetabling
• Crew scheduling
• Graph coloring
• Many others

2/7



The Paradox

Column Generation is thriving:
• Hundreds of relevant papers published annually
• Modern advanced BCP algorithmsmuchmore powerful than BPs of 20 years
ago

• Routinely applied in industry for million-dollar optimization problems

Yet, it remains a “well-kept secret”

3/7



Key Challenges

• Educational Barriers:
• No textbook (until very recently!)
• Many key techniques are scattered in research articles
• Non-standardized notation and terminology across literature

• Implementation Challenges:
• Commercial solvers don’t support Branch-and-Price
• Open-source frameworks have limitations
• May require custom coding for state-of-the-art performance

• Result: Technique is underutilized despite its potential

4/7
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“Optimizing with Column Generation”

Part I - Column Generation Basics:
• Five chapters covering CG principles in-depth (no contradiction!)
• Finished (300+ pages) and available for download at
https://optimizingwithcolumngeneration.github.io/

6/7



“Optimizing with Column Generation”

Part II - Topics in Column Generation:
• Eight chapters covering the most advanced techniques in state-of-the-art
BCP algorithms

• Expected to be finished by the end of 2025

7/7



OJMO: a Diamond Open Access journal in

Mathematical Optimization

Michael Poss

Michael Poss OJMO: a Diamond Open Access journal in Mathematical Optimization 1 / 7



The beginnings ...

Back in the days, publishing was expensive!

Michael Poss OJMO: a Diamond Open Access journal in Mathematical Optimization 2 / 7



The publishing oligopoly

Electronic publishing and LATEX significantly reduced the costs
Led to nearly open and free publications?

Unfortunately, they led instead to ever-increasing profit margins:

Michael Poss OJMO: a Diamond Open Access journal in Mathematical Optimization 3 / 7
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The publishing oligopoly
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The uprising

Taken from the presentation of Marie Farge

Michael Poss OJMO: a Diamond Open Access journal in Mathematical Optimization 5 / 7



Diamond Open Access today

Excellent free journals exist today, for instance;

Machine learning, Artificial intelligence

Journal of Artificial Intelligence Research (JAIR)
Journal of Machine Learning Research (JMLR)

Theoretical Computer Science

Advances in Combinatorics
TheoretiCS
Theory of Computing
Innovations in Graph Theory (just started)

And many more: https://freejournals.org/current-member-journals/

Michael Poss OJMO: a Diamond Open Access journal in Mathematical Optimization 6 / 7



Open Journal of Mathematical Optimization (OJMO)

Steering Committee
Dimitris Bertsimas
Martine Labbé
Eva K. Lee
Marc Teboulle

Area Editors
Continuous Optimization - David Russell Luke
Discrete Optimization - Sebastian Pokutta
Optimization under Uncertainty - Guzin Bayraksan
Computational aspects and applications - Jérôme Malick

As of today
ranked Q2 at Scimago in Control and Optimization
indexed in zbMATH, Scopus, dblp, MathSciNet
5 issues, 8-10 papers per issue
>20 papers in the pipeline

Visit https://ojmo.centre-mersenne.org/

Michael Poss OJMO: a Diamond Open Access journal in Mathematical Optimization 7 / 7



Price of Anarchy for Graphic
Matroid Congestion Games

Marc Uetz, University of Twente
(with Wouter Fokkema and Ruben Hoeksma)



Graphic Matroid Congestion Game

• Given graph  ! = #, %
• Players & select spanning tree '!
• Affine cost function per edge (
• No. of players )" on edge (,

cost *" )" = +" )"+ -"

Marc Uetz – PoA Graphic Matroid Congestion Games

! "! = "! for all edges $
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Graphic Matroid Congestion Game

Marc Uetz – PoA Graphic Matroid Congestion Games

! %" = 3,
! %# = 3

• Given graph  ! = #, %
• Players & select spanning tree '!
• Affine cost function per edge (
• No. of players )" on edge (,

cost *" )" = +" )"+ -"

Total cost ∑*('!) = 6 

⇒ Price of Anarchy (PoA) ≥ 4/3
5



Price of Anarchy Symmetric Congestion Games

PoA for arbitrary atomic congestion games and ) players is 
at most (5) − 2)/(2) + 1)

Marc Uetz – PoA Graphic Matroid Congestion Games

[Christodolou & Koutsoupias STOC 2005]
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Result: Tight Lower Bound Constructions

PoA for graphic matroid congestion games and ) players is 
equal to (5) − 2)/ 2) + 1 ∗

Marc Uetz – PoA Graphic Matroid Congestion Games

(*) for ! = 2,3,4 and ! → ∞

[SAGT 2024]
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